O APPROVED FOR LEASE 1 JULY 2015 日本人名	đi na seliti na selit Na seliti na	· ·
AEROSPACE LIBRARY Document No. ALOS-10346 Copy No. ARCHIVES		<u>بن</u>
		• •
	AEROSPA OPEN	, , }
	AEROSPROPERTY RETURN TO CORP LIB	OF DRATION BARY ON
	AEROSPACE CO	DRPORATION

AEROSPACE CORPORATION

ł

INTEROFFICE CORRESPONDENCE

64-8130-ML-18

тο: δ

See Below

cc: MOLS Custral Files

DATE: 11 August 1964

SUBJECT: Crev Safety Briefing Charts

FROM: E. L. LePorte

The attached set of briefing charts is for your information and files. The Crew Safety briefing was given to Col. W. D. Brady on 11 August 1964.

> E. L. LePerte Director Gemini B/Titen III Office

BLL ST

ة ا

Attechnesit

- To: R. T. Dungan
 - A. D. Malenbeck
 - C. L. Olson
 - L. M. Noaks
 - W. C. Villiame

NRO APPROVE DR

. .

CREW SAFETY REVIEW

ang. 11, 1969

.

· · · · ·

64-2130 - ELL-1

.

• CREW SAFETY

/ INTRODUCTION

/ ON PAD ABORT

/ IN-FLIGHT TO 35,000 FEET

/ IN-FLIGHT 35,000 FEET TO 70,000 FEET

/ BACK-UP GUIDANCE

EVALUATION CRITERIA

STATUS SUMMARY

/ CONCLUSION

• EVALUATION OF SEAT EJECTION SYSTEM

/ USED ONLY DURING STAGE 0 FLIGHT REGIME

/ REMAINING BOOST PHASE NOT PERTINENT TO SEAT/TOWER SELECTION

• REVIEW/STATUS/CONCLUSION TO DATE FOR STAGE 0 FLIGHT

TITAN LIC CREW SAFETY CONSIDERATIONS

• TITAN III ABORT ENVIRONMENT MORE SEVERE THAN GLV

/ HIGHER TNT EQUIVALENCE

NRO APPRON

/ THRUST TERMINATION EXHAUST PLUMES IN STAGE 0 FLIGHT

/ MORE SHORT WARNING TIME MALFUNCTIONS IN INITIAL BURN STAGE

• NO REDUNDANT F/C - GUIDANCE SYSTEM

/ STAGING OF TUNNEL FAIRING

• RE-EVALUATION OF GEMINI A EJECTION SEAT ESCAPE MODE REQUIRED

/ COMPARISON OF NEW ENVIRONMENT VERSUS SEAT/SUIT/MAN CAPABILITY

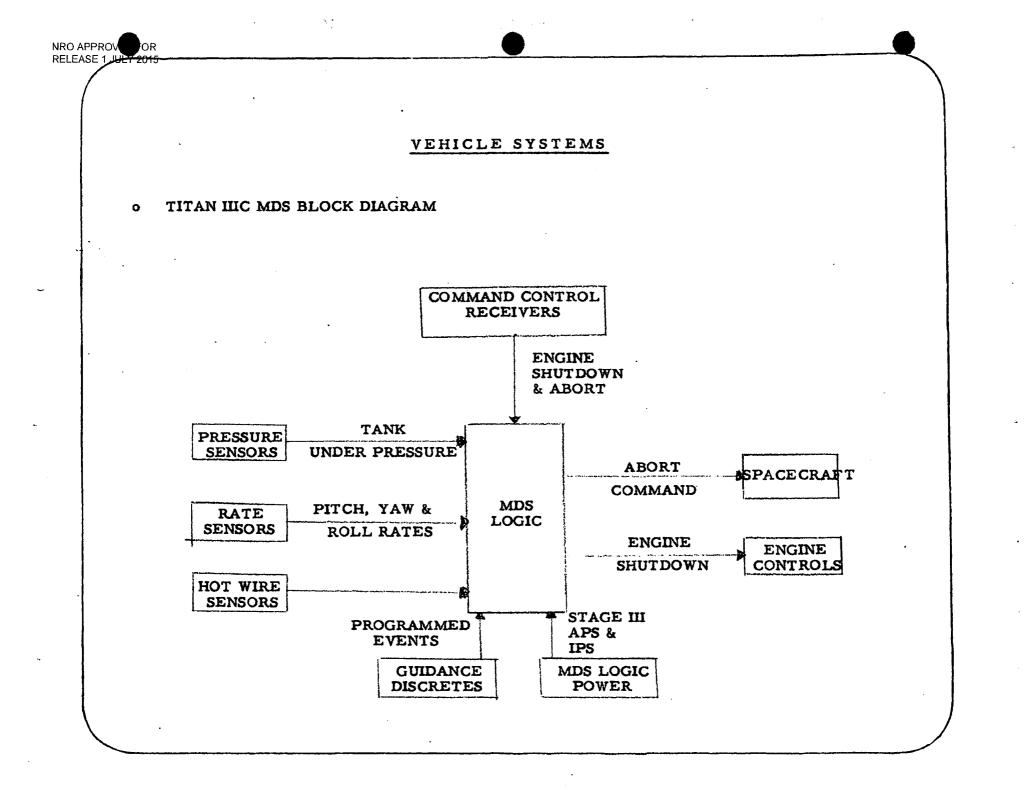
• MAY REQUIRE ESCAPE TOWER

NRO APPROVE OR RELEASE 1 JULY 2015

GLV - THIC CREW ESCAPE REQUIREMENTS COMPARISON

.

.


	GLV	TIIIC
PROBABILITY OF MISSION FAILURE DURING INITIAL BURN STAGE	29×10^{-3}	33×10^{-3}
OVERPRESSURE ASSOCIATED WITH VEHICLE BREAK-UP		APPROXIMATELY 50% HIGHER THAN GLV
FIREBALL ASSOCIATED WITH VEHICLE BREAK-UP	610' DIAMETER	735' DIAMETER
THERMAL ENVIRONMENT AFTER THRUST TERMINATION BUT PRIOR TO BREAK-UP	NONE	T.T. EXHAUST PLUMES PRESENT
MALFUNCTION WARNING TIME	COMPLETE SYSTEM DESIGNED TO ELIMINATE MALFUNCTIONS WITH SHORT WARNING TIME	COMPLETE SYSTEM DESIGNED ASSUMING AUTOMATIC ESCAPE SYSTEM FOR SHORT WARNING TIME MALFUNCTIONS
PROBABILITY OF MALFUNCTION WITH LESS THAN 2 SECONDS BETWEEN DETECTION AND BREAK-UP	9 X 10 ⁻⁴	25 X 10 ⁻⁴

.

7

TITAN LUC FAILURE MODE VERSUS FLIGHT PHASE FAILURES PER MILLION LAUNCHES

		FLIGHT PHASE					
	FAILURE MODE	0	I	ш	ш	COAST	TOTAL
1	LOW ENGINE THRUST, NO THRUST OR PREMATURE S/D	4, 500	4,700	15,000	27,000	25	52,000
22	VEHICLE UNSTABLE	10,000	17,000	5,000	16,000	2,700	51,000
3	THRUST VECTOR REMAINS ON NULL	850	6,500	1,300	1,300	15,000	25,000
4	HARD-OVER OR FAST ATTITUDE DIVERGENCE	3,400	4,000	1,600	6,000	6,000	21,000
5	SLOW ATTITUDE DIVERGENCE	5,800	180	700	1,800	2,000	11,000
6	COLLAPSE OR PUNCTURE OF PROPELLANT TANK	7,300	860	940	1,100		10,000
7	STRUCTURAL BREAK-UP OR EXPLOSION	260	2,000	1,600	95	6	4,000
	FAILURE TO SEPARATE PAYLOAD					3, 400	3,400
	COLLISION WITH PAYLOAD	*				1,700	1,700
8	TIP-OVER ON PAD	210			· · · ·		210
	ENGINE FAILS TO SHUT-DOWN		46	64	20	11	140
9	PREMATURE STAGING	23	2	3	42	24	94
10	LOSS OF BEACONS OR RADIO COMMAND LINK	9	2	3	15	11	40
	FALSE ABORT	1	1	22		1	25
	PREMATURE STAGE III ENGINE START					19	19
	TOTAL	-33,000	36,000	27,000	54,000	31,000	180,000

EJECTION SEAT CHARACTERISTICS

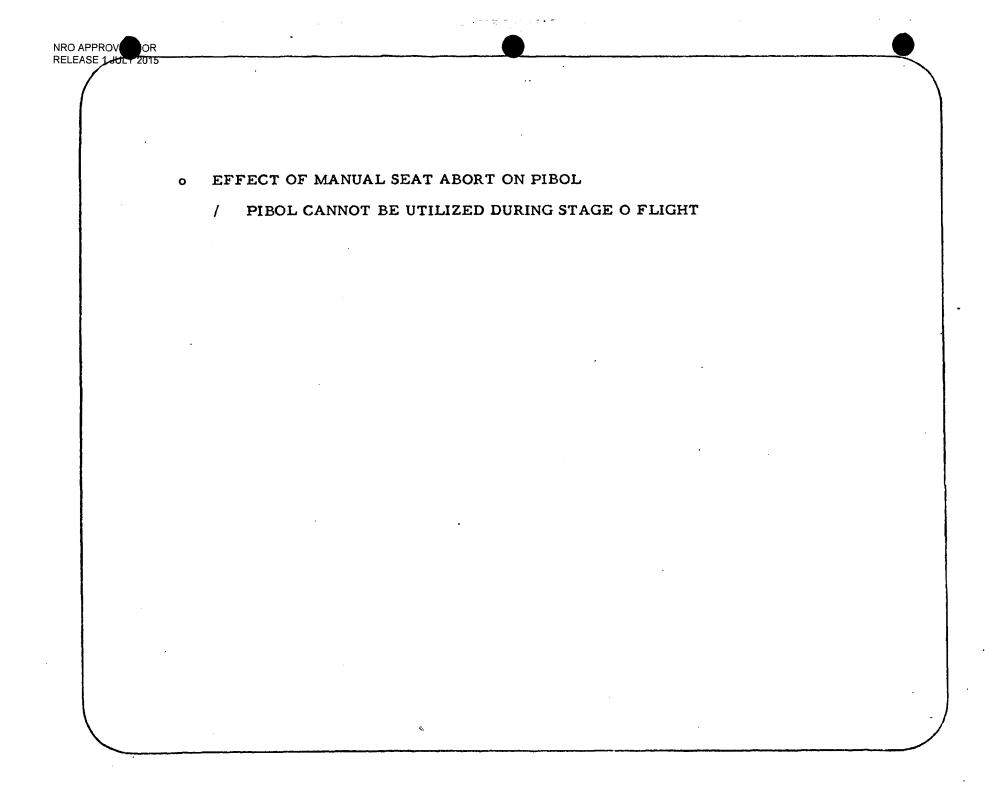
• MANUAL ABORT INITIATION BASED ON PARAMETRIC AND GO-NO-GO DISPLAYS

• REQUIRED WARNING TIME

/ MAN DECISION TIME +. 45 SECONDS

- **o** ASTRONAUT/SEAT SEPARATION TIME
 - / MAN DECISION TIME +1.55 SECONDS
- NON-STABILIZED SEAT WITH POOR NATURAL STABILITY
- SEATS ARE USED ON PAD AND UP TO 35,000 FEET (MAY BE LOWERED)

ESCAPE TOWER


- CHARACTERISTICS
 - / LAUNCH WEIGHT 2,000 POUNDS
 - / THRUST 65,000 POUNDS
 - / TOTAL IMPULSE 75,000 LB-SEC

• .

- / LENGTH
- 15 FEET
- REQUIRES DEVELOPMENT AND TEST PROGRAM

• REQUIRES MAJOR STRUCTURAL CHANGES TO GEMINI B

- POSSIBLE TOOLING CHANGES
- STRUCTURAL TEST

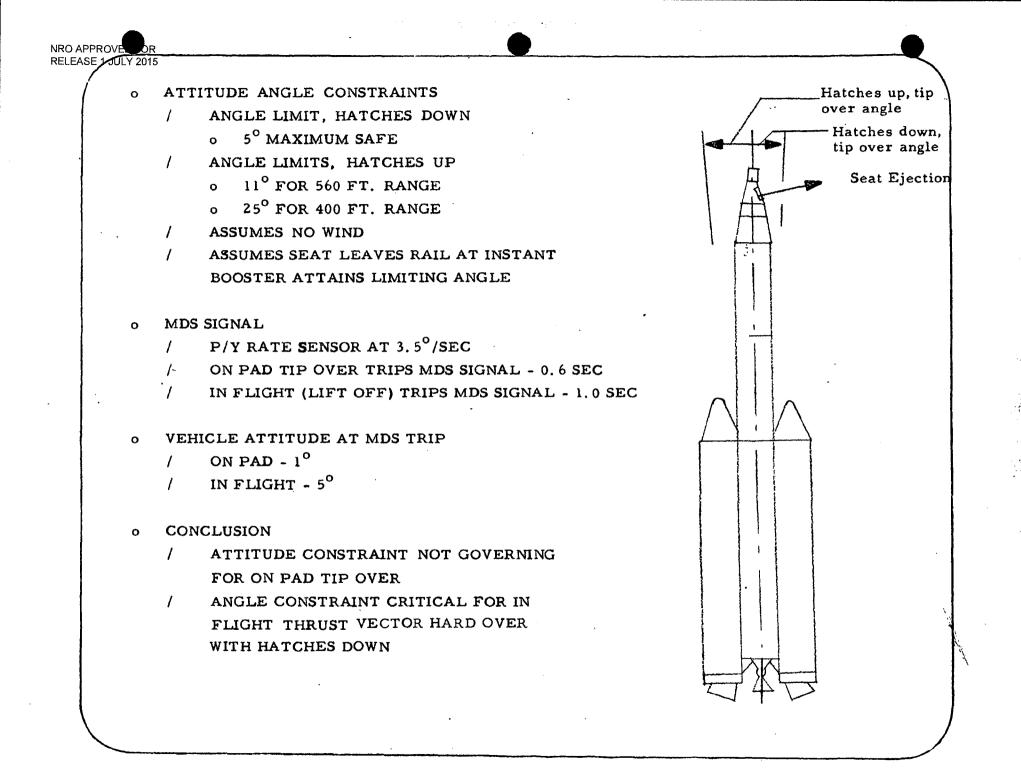
• ON-FAD ABORT

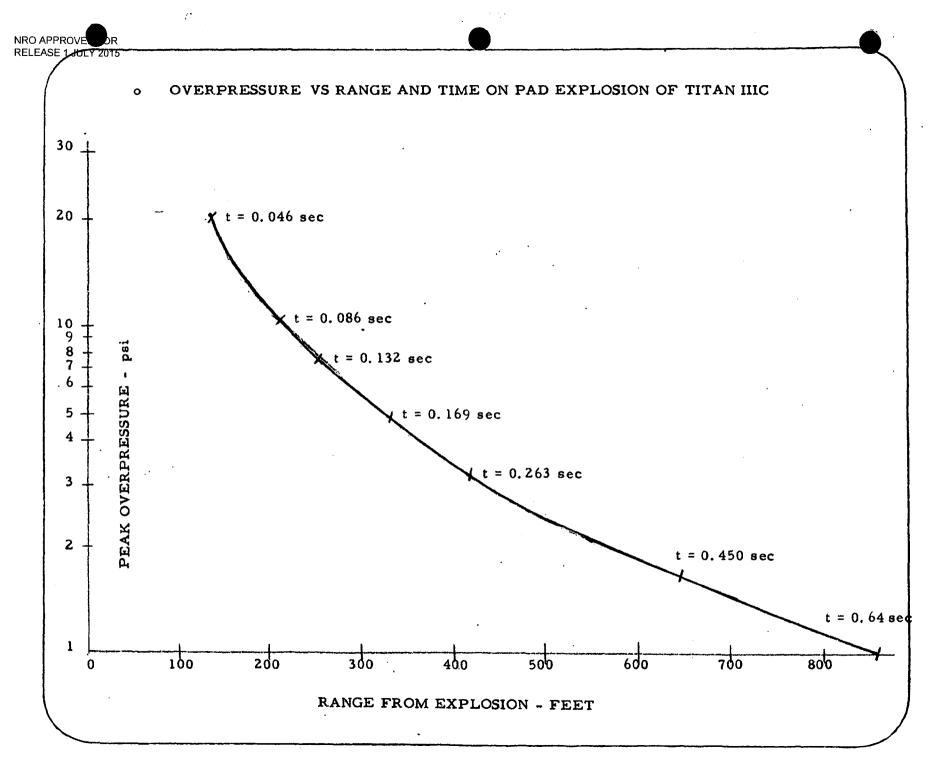
/ FAILURE MODES

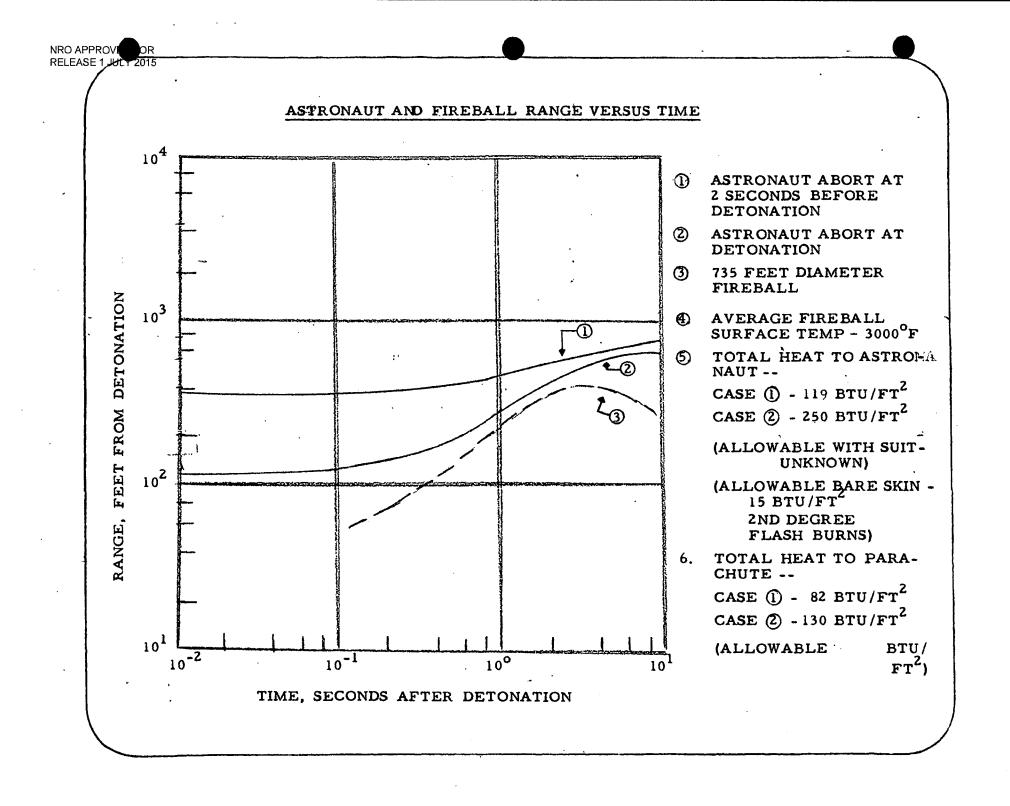
ABORT ENVIRONMENT

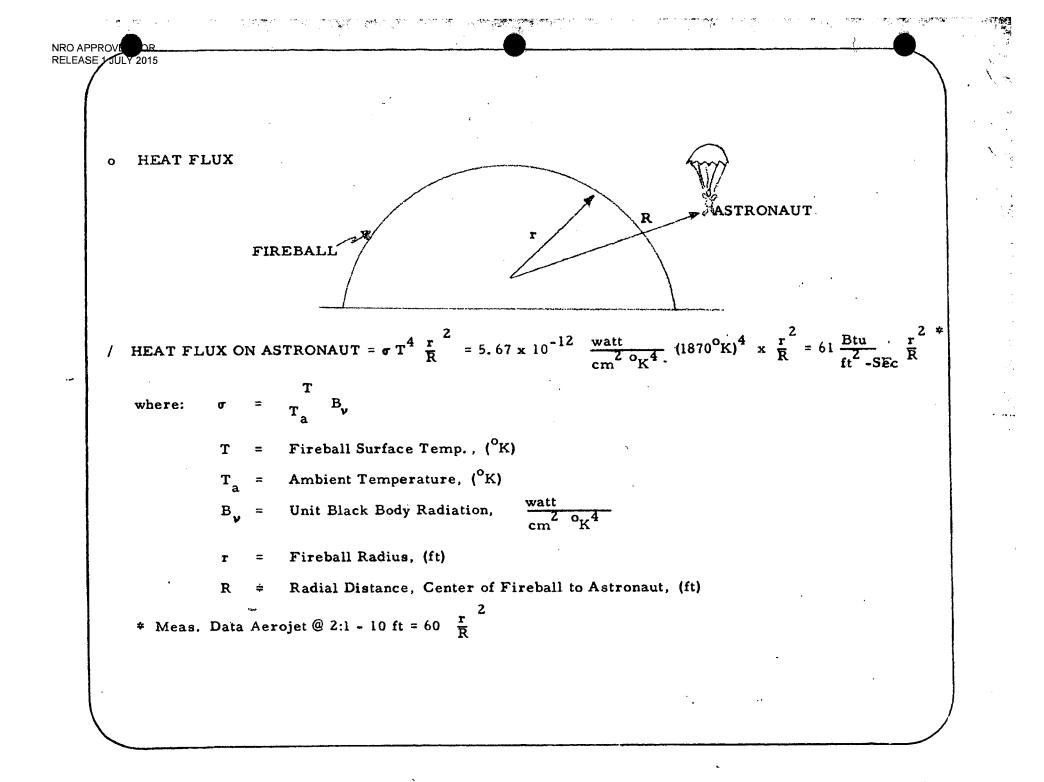
EFFECT UPON SEAT EJECTION SYSTEM

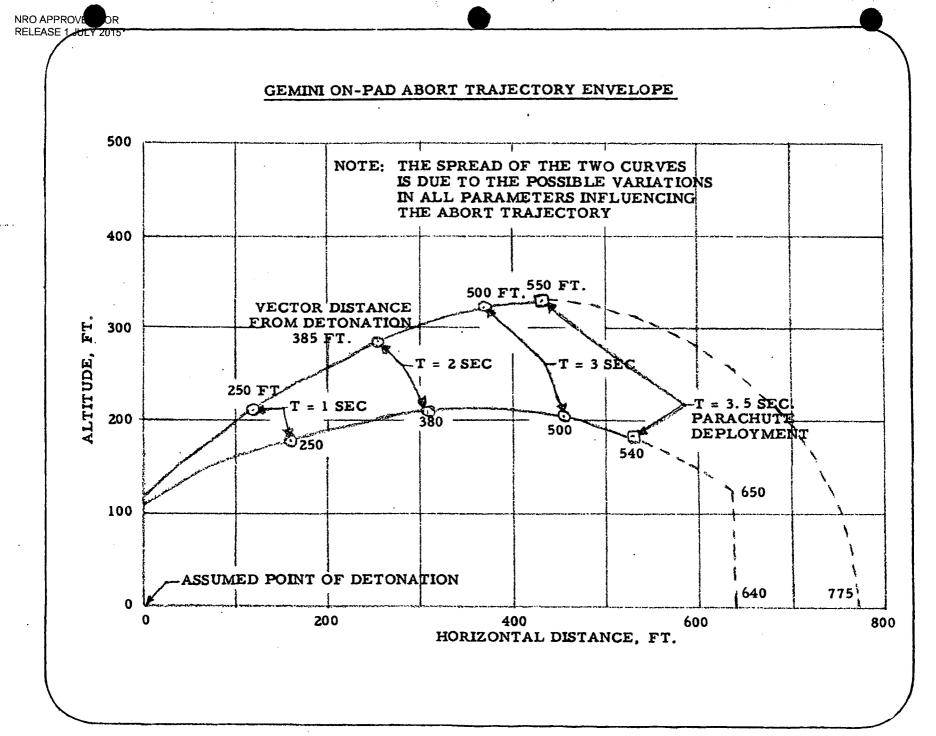
(A, A, A, A, A)

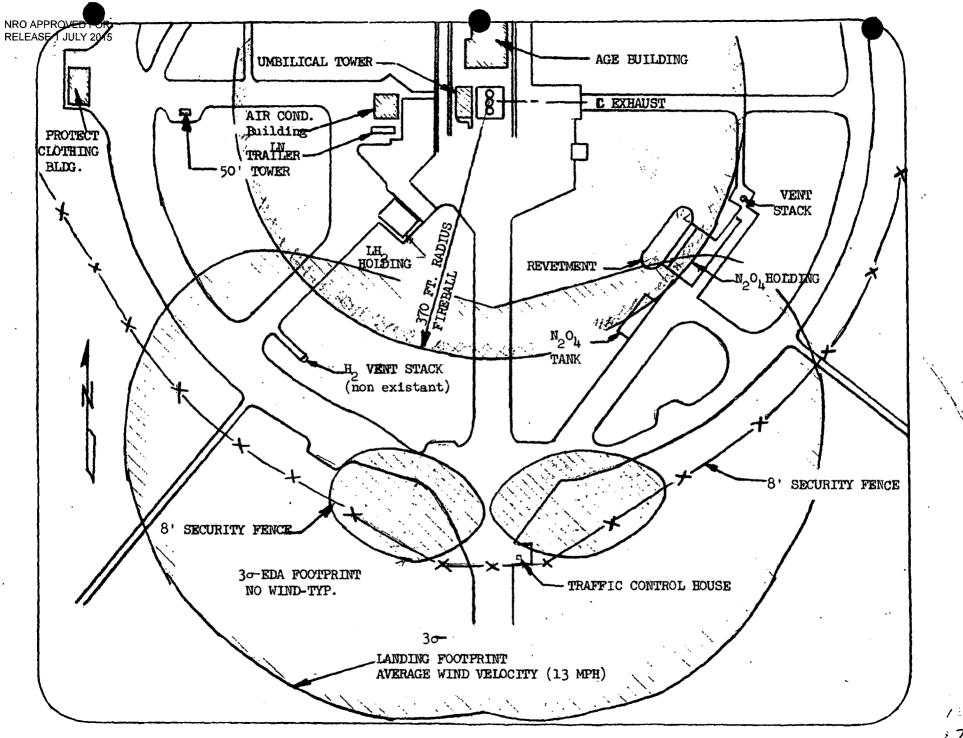

/ DATA NEEDED

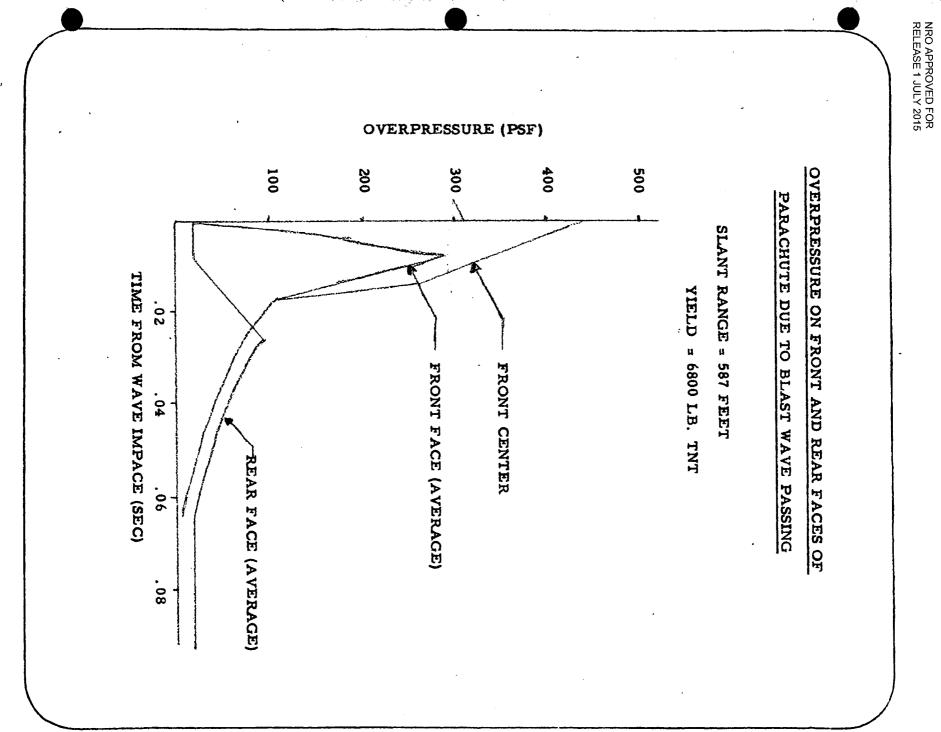

/ SUMMARY

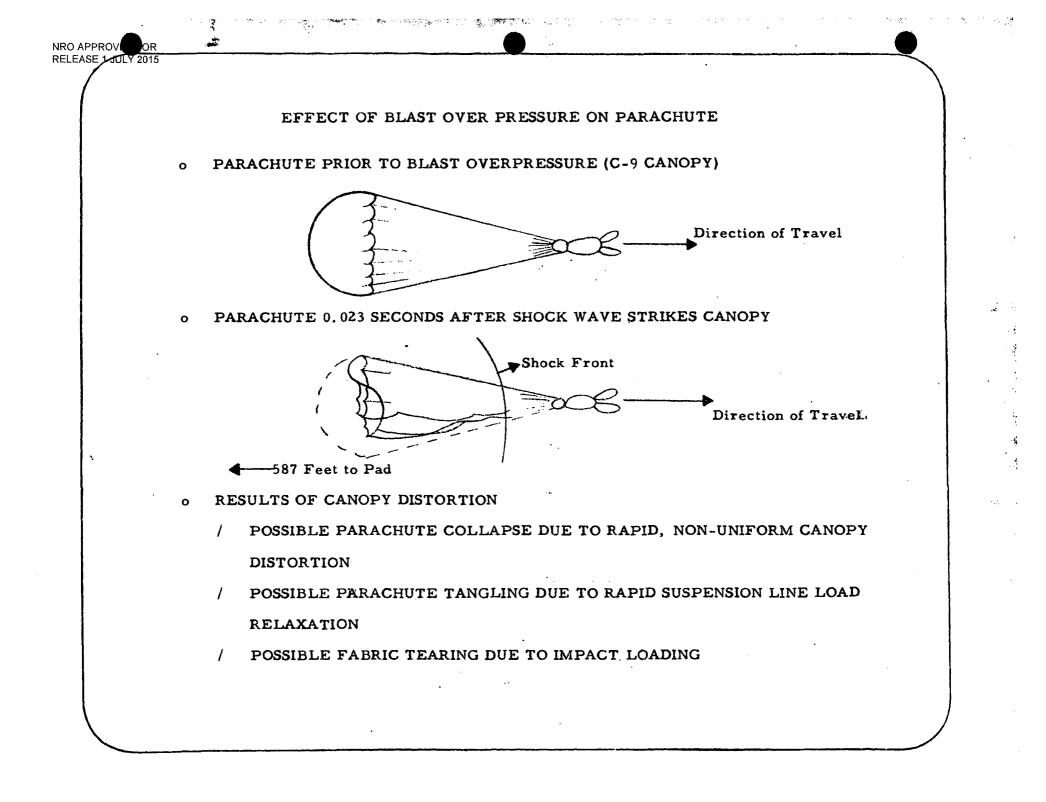

/ CONCLUSIONS


• ON-PAD FAILURE MODES


- / TIP-OVER
 - o **PROBABILITY 200/MILLION LAUNCHES**
 - WARNING TIME
 - / MINIMUM 1.2 SECONDS (IMPACT WITH STAND)
 - / MAXIMUM 2.6 SECONDS (EXCEED ATTITUDE LIMITS FOR HATCH UP)
- / SINGLE THRUST VECTOR HARDOVER
 - PROBABILITY 200/MILLION LAUNCHES
 - / MINIMUM 1.0 SECONDS (EXCEED ATTITUDE LIMITS FOR HATCH DOWN)
 - / MAXIMUM 3.2 SECONDS (EXCEED ATTITUDE LIMITS FOR HATCH UP)







••••

NRO APPROVE

POSSIBLE SOLUTIONS

and the second secon

SAMPS TO A THE SHOTTY SHIT DAMAGE AND SHOT AND

and the second of the second second

o PARACHUTE DESIGN

AND CONTRACTORS

/ ADD PRESSURIZED MEMBERS TO PRESENT CANOPY

• STIFFEN CANOPY TO AVOID COLLAPSE

/ PROVIDE GEOMETRIC POROSITY ON CANOPY TO PERMIT RAPID EQUALIZATION OF BLAST PRESSURE EFFECTS

• USE RING SLOT CHUTE

/ RECUIRES DROP TEST PROGRAM

NRO APPROVE DR RELEASE 1 JULY 2015

,

1.00

- ×5

- a

ABORT LEAD TIME

.

the state of the s

•

.

· · · · ·

ABORT TIME - SEC	ASTRONAUT DISTANCE	RESULTING	POSSIBLE
(FROM DETONATION)	AT DETONATION	ENVIRONMENT	EFFECT
T > -15	600 - 800 FT. (ON GROUND)	O'PRESS 91.1 - 1.5 PSI) FIREBALL (370 FT. RADIUS)	NONE NONE
-15 SEC > T > -3.5	550 - 800 FT. (PARACHUTE OPEN)	O'PRESS (1.1 - 1.9 PSI) FIREBALL (370 FT. RADIUS)	PARACHUTE COLLAPSE PARACHUTE BURN?
-3.5 SEC > T > -2	380 - 550 FT.	O'PRESS (1.9 - 3.4 PSI)	EARDRUM RUPTURE?
-2 SEC > T > 0	60 - 380 FT.	O'PRESS (3.4 - 200 PSI)	50% LETHAL
•	EAD TIME FROM DETONA	ATION IS:	
/ 2-3.5	SEC.		
/ < 15 SE	CC.		

o D'ATA NEEDED

/ SUIT CAPABILITY

1.7.5

/ FRAGMENTATION

÷

/ TOXICITY

:

..

NRO APPROVICE OR RELEASE 1-JULY 2015

SUMMARY

• ON-PAD FAILURE PROBABILITIES ARE LOW

 $/ \approx 400$ /MILLION LAUNCHES

• ADDITIONAL DATA NEEDED

/ ABORT ENVIRONMENT

/ SUIT CAPABILITY

/ FUNCTIONAL RELIABILITY OF SEATS

0 LANDING FOOTPRINT SENSITIVE TO WIND VELOCITY AND DIRECTION

o ABORT INITIATION TIME WINDOW NARROW

 $\approx 2 - 3.5$ SECONDS PRIOR TO DETONATION

• RELIABILITY OF SEAT SYSTEM HAS TO BE FACTORED IN TO DETERMINE CREW FATALITY RATE NRO APPROVIDE OR RELEASE 1.40LY 2015

• CONCLUSIONS

/ SEAT EJECTION ABORT FOR ON-PAD FAILURE APPEARS EXTREMELY HAZARDOUS

28

/ SEAT EJECTION SYSTEM SHOULD NOT BE DISCARDED ON BASIS OF ON-PAD ABORT

A CONTRACTOR OF THE OF THE

 LOW FAILURE RATE - 400 FAILURES/MILLION LAUNCHES EXCLUDING SEAT RELIABILITY NRO APPROVIDOR RELEASE 1 HULY 2015

•

A Marine .

and the second second

and the second of the second second

ABORT FOR IN-FLIGHT TO 35,000 FEET

. . .

.

. .

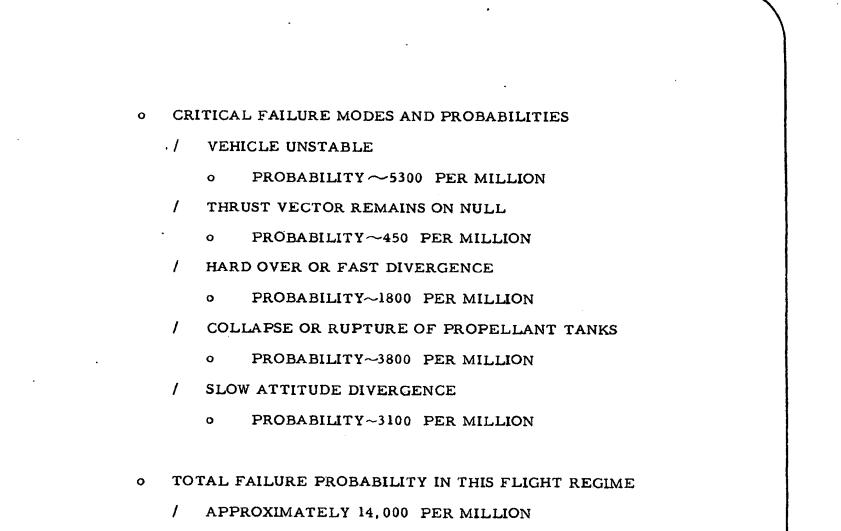
	· ·
0	CONSIDERATIONS
	/ CRITICAL FAILURE MODES
	/ WARNING TIMES
	/ FAILURE ENVIRONMENT
	/ SEAT EJECTION MODE
	•

a that is a start of the start of

gan she

•

and the second second


.

.

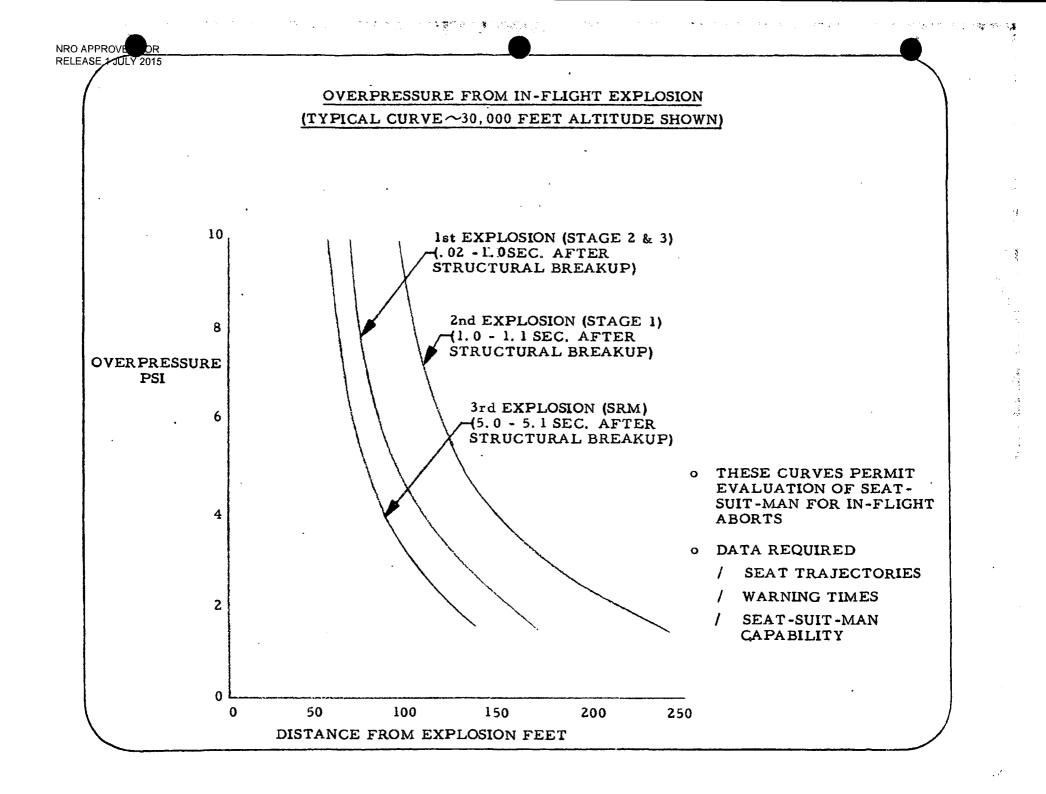
..

:

. ·

이 전 같이 이 전체 방법에서 이 것이지 이 물건이 가 많이 있어요. 이

• WARNING TIMES


- NO FIRM DATA TO DATE
- / MMC WILL HAVE BY 14 AUGUST
- / MDS
 - PITCH/YAW RATE SENSOR TRIPS AT 3.5°/SEC
- VEHICLE BREAKS UP AT APPROXIMATELY 20[°] ANGLE OF ATTACK (MAX q)
- ONE THRUST VECTOR HARD OVER
 - ATTITUDE ACCELERATION-APPROXIMATELY 10°/SEC²
 - WARNING TIME~1,7 SEC FROM MDS SIGNAL TO BREAK UP
- / TWO THRUST VECTOR HARD OVER
 - ATTITUDE ACCELERATION-APPROXIMATELY 20°/SEC²
 - WARNING TIME -. 7 SEC FROM MDS SIGNAL TO BREAK UP

• VEHICLE MOTIONS DUE TO FAILURES

- / MMC HAS CALCULATED
- IN FLIGHT OVER PRESSURES
 - / EXPLOSION DUE TO STRUCTURAL BREAK UP
 - / EXPLOSION DUE TO COMMAND DESTRUCT
- IN FLIGHT FIREBALL
 - / MMC WILL HAVE DATA BY 14 AUGUST

o FRAGMENTATION

- / VERY LITTLE DATA AVAILABLE
- / MMC WILL HAVE "BEST GUESS" BY 14 AUGUST
- THRUST TERMINATION PLUME
 - / UTC DATA AVAILABLE

o SEAT EJECTION MODE

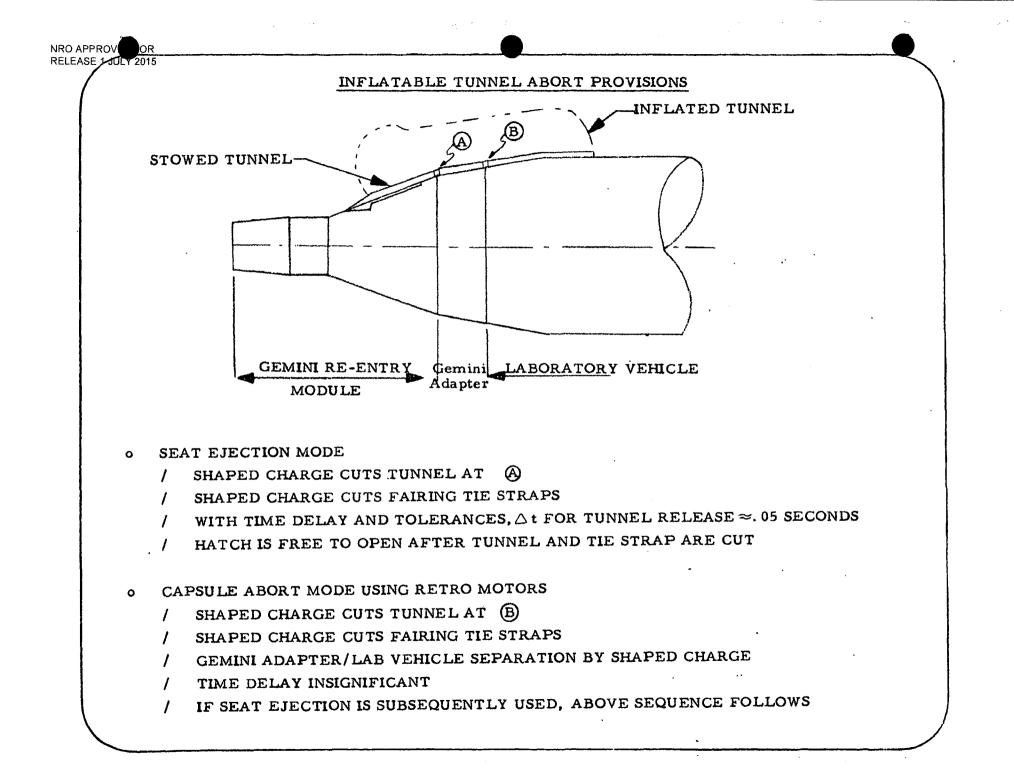
- / SEAT EJECTION SEQUENCE AND WARNING TIMES CRITICAL
- MAC WILL HAVE SEAT TRAJECTORIES BY 14 AUGUST
- / SEAT-SUIT-MAN CAPABILITY IN ENVIRONMENT UNKNOWN
- / PARACHUTE CAPABILITY
 - CURRENT INDICATIONS NO PROBLEM

• SEAT EJECTION SEQUENCE

1

- / TIME 0 PULL "D" RING
 - .24 SECS HATCH OPEN
- / .39 SECS SEAT AT END OF RAIL
- / .72 SECS SUSTAINER ROCKET BURNOUT

C. 990 CONTRACTOR


1.3

/ 1.46 SECS - INITIATION OF SEAT-MAN SEPARATOR

inner son in migger of species, a right

- / 1.50 SECS MAN FREE OF SEAT
- / VARIABLE MAN FREE FALLS TO 5700 FEET
- / AT 5700 FT. INITIATION OF PARACHUTE SYSTEM

• ADDITION OF INFLATABLE CREW TRANSFER TUNNEL ADDS. .05 SECS TO TIME

	•
o	SUMMARY
	/ FAILURE ENVIRONMENT DATA AVAILABLE ON 14 AUGUST
	/ SEAT TRAJECTORIES AVAILABLE ON 14 AUGUST
	/ WILL PERMIT COMPARING TRAJECTORY TIME HISTORIES WITH ENVIRONMENT TIME HISTORIES AT THAT TIME
	/ LACK OF SEAT-SUIT-MAN CAPABILITY DATA WILL NOT PERMIT CLEAR DECISION

.

يداعه المراجع المراجع

NRO APPROVIDE OR RELEASE 1 JULY 2015

• TENTATIVE CONCLUSION

1.1.1.1.1.1

100700

and the care

/ WARNING TIMES VERY CRITICAL

Sec. 8.

/ CAN NOT HANDLE TWO THRUST VECTOR HARD OVER FAILURES

夏·增强数111、34%。4.1

• LOW PROBABILITY

NRO APPROVE OR RELEASE 1, HOLY 2015

1

ABORT FOR IN-FLIGHT

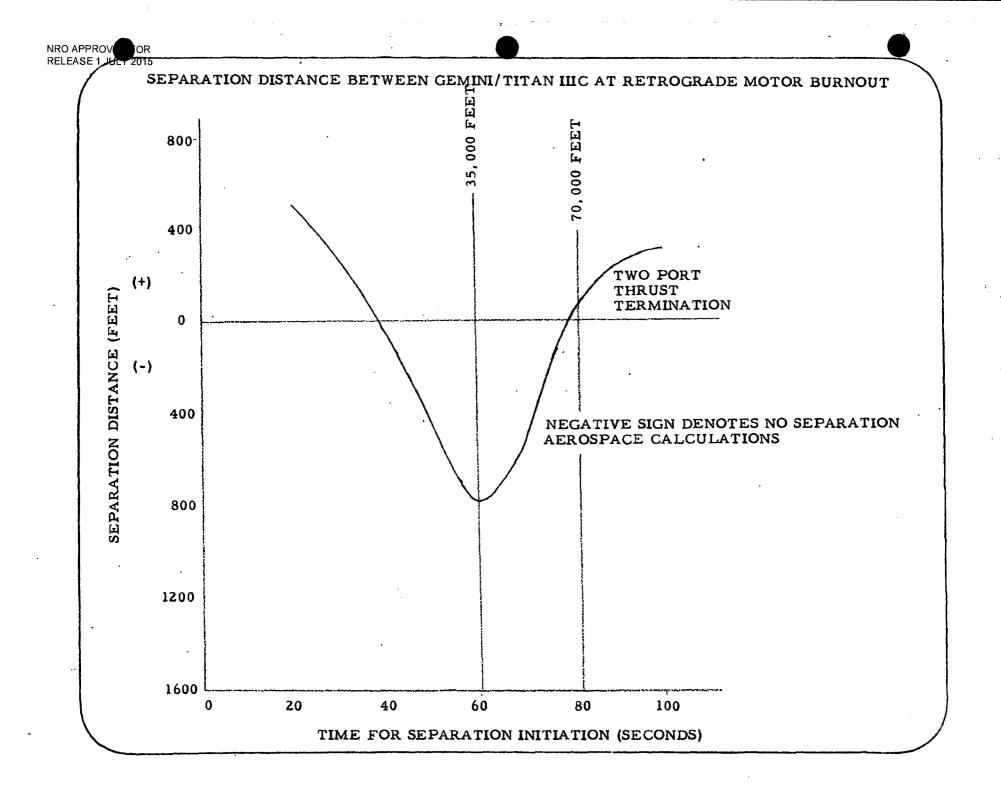
.

.

n jan na kun 🦛 👯 🖓 na na anala na na anala na anala

7.00

 $(1,1) \in \mathbb{N}^{n+1}$


<u>ي</u>د

 $\sim 10^{-1}$

35,000 FEET - 70,000 FEET

/	
	• CRITICAL ABORT ALTITUDE (35,000 - 70,000 FEET)
	/ EJECTION SEAT MODE CANNOT BE USED ABOVE 35,000 FEET
	<pre>/ PRESENT SPACECRAFT ESCAPE MODE CANNOT BE USED BELOW 70,000 FEET</pre>
	/ TITAN HIC FAILURE RATE
	o 8 FAILURES/1,000 LAUNCHES
	• CONCLUSION
	/ NO SAFE ESCAPE METHOD IN THIS CRITICAL ALTITUDE RANGE
	/ INVESTIGATE ALTERNATE ESCAPE MODES
	• LOWER SPACECRAFT ALTITUDE ABORT CAPABILITY TO REDUCE RISK
	·

٠

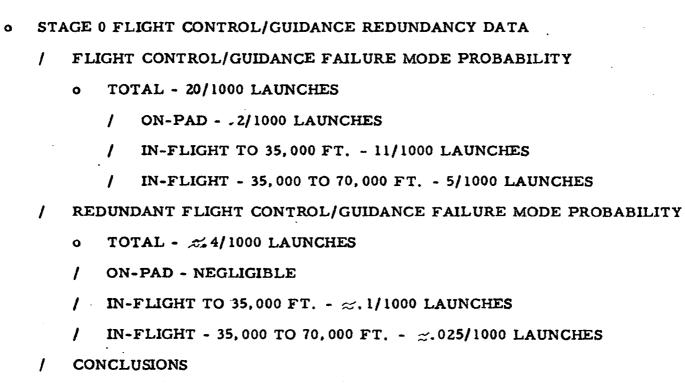
PRESENT AEROSPACE ABORT STUDIES

• ADDITIONAL THRUST REQUIRED TO ABORT SPACECRAFT SAFELY (WITHOUT ESCAPE TOWER)

• CASES CONSIDERED

- / ABORT FROM ON-PAD UP TO 70,000 FEET USING SPACECRAFT ONLY (CASE I)
- / ABORT WITH SPACECRAFT FROM 35,000 FEET AND HIGHER (CASE II)
- / SAME AS ABOVE AND COMPLEMENTING WITH SEAT EJECTION (CASE III)
- / WHEN MC DATA IS AVAILABLE, THE STUDY WILL INCLUDE CONSIDERATION OF BOOSTER FAILURE ENVIRONMENT
- / DETERMINE RETROGRADE AND RE-ENTRY ABORT REQUIREMENTS FOR ORBITAL ALTITUDE = 250 N.M.
- COMPLETION
 - / 15 SEPTEMBER 1964

	-	
		SPACECRAFT (S/C) ESCAPE MODE
	o	CASE I (ON-PAD THROUGH 70,000 FEET)
		/ STUDY OUTPUT
		• SEPARATION DISTANCE BETWEEN GEMINI B AND TITAN HIC
		• ABORT PROPULSION REQUIRED
		• SPACECRAFT DYNAMIC CHARACTERISTICS AFTER ABORT
		• DETERMINE WHETHER S/C MAIN PARACHUTE WILL COLLAPSE
		• MODIFICATIONS REQUIRED TO S/C
	o	CASE II (35 000 FEET AND HIGHER)
		/ STUDY OUTPUT
		• SIMILAR TO CASE I ABOVE
	o	CASE III (S/C + SEAT EJECTION)
		/ STUDY OUTPUT
		• SIMILAR TO CASE I AND CASE II ABOVE WITH ADDITIONAL INVESTIGATION
		OF USING EJECTION SEATS AFTER S/C FREE FALLS
•		


•

• BACK UP GUIDANCE

/ IMPROVES G/FC RELIABILITY FROM . 938 TO . 952

/ AEROSPACE STUDY TO EVALUATE ROLE OF BACK UP GUIDANCE

• COMPLETION - 15 OCTOBER 1964

- REDUNDANT FLIGHT CONTROL/GUIDANCE SYSTEM FOR TITAN IIIC (STAGE 0 ONLY) CAN REDUCE CREW RISK SIGNIFICANTLY
- AEROSPACE TO EVALUATE

• ABORT MODES TO BE EVALUATED (STAGE O FLIGHT)

/ PRESENT SEAT/S.C. SYSTEM

/ PRESENT SEAT/MODIFIED S/C SYSTEM

• IMPROVED ABORT CAPABILITY OF S/C SYSTEM

/ TOWER

• EVALUATION CRITERIA

/ STAGE O ABORT RISK

o ON-PAD

o IN-FLIGHT TO 35,000 FEET

o IN-FLIGHT 35,000 FEET TO 70,000 FEET

/ PERFORMANCE

o **RELIABILITY**

• GREATER NUMBER OF FLIGHTS

/ TECHNICAL RISK

/ DEVELOPMENT AND TEST TIME

ADDITIONAL COST

• STATUS SUMMARY

NRO APPROVENDOR RELEASE 1 JULY 2015

COMPLETED AEROSPACE STUDIES

- "GEMINI/TITAN IIIC ON-PAD ABORT SAFETY ANALYSIS" TOR-269(4107-15)-1
- "EFFECT OF HARDOVER MALFUNCTIONS IN TITAN III ON MOL" TOR-469(5107-15)-1
- PARACHUTE COLLAPSE ANALYSIS
- / AEROSPACE STUDIES UNDERWAY
 - UTILIZE S/C ABORT AT 35,000 FEET AND ABOVE
 - / COMPLETE 15 SEPTEMBER 1964
 - BACK-UP GUIDANCE
 - / COMPLETE 15 OCTOBER 1964
- AEROSPACE/MC/MAC MEETING ON 14 AUGUST 1964 IN DENVER
- / MARTIN TO PROVIDE INTERIM REPORT ON ABORT ENVIRONMENT 14 AUGUST 1964
 - SHOULD PROVIDE REQUIRED ENVIRONMENT DATA TO EVALUATE SEAT SYSTEM
- VEHICLE RATES/OVERPRESSURE CURVES ARE AVAILABLE
 MAC TO PROVIDE IN-FLIGHT SEAT TRAJECTORIES AT 14 AUGUST 1964 MEETING
 - COMBINED WITH MARTIN DATA TO EVALUATE SEATS FOR IN-FLIGHT USE
- SSD OBTAINING SEAT/SUIT/MAN CAPABILITY DATA FROM NASA
- SSD/AEROSPACE EVALUATION CRITERIA AND WEIGHTING FACTORS
 - UNDER REVIEW

o CONCLUSIONS

ON-PAD ABORT EXTREMELY HAZARDOUS, BUT HAS LOW PROBABILITY OF OCCURRENCE

/ FATALITY RATE IS AT LEAST 8 CREWS/1,000 LAUNCHES EXCLUDING S.C. /SEAT RELIABILITY

- DETERMINED BY TIME GAP BETWEEN SEAT ABORT CEILING AND S/C ABORT CAPABILITY \approx 25 SECONDS
- / BOTH SRM THRUST VECTOR HARDOVERS DO NOT PROVIDE ADEQUATE LEAD TIME FOR SEATS FOR IN-FLIGHT ABORT
 - LOW PROBABILITY OF OCCURRENCE
- / CONCENTRATE ON FOLLOWING FAILURE MODES
 - SINGLE THRUST VECTOR HARDOVER
 - o THRUST VECTOR NULL
- / NEED MORE IN-FLIGHT ABORT DATA TO EVALUATE FULLY THE SEAT SYSTEM
- / SELECTION OF SEAT VERSUS TOWER DECISION CAN BE MADE

15 SEPTEMBER 1964