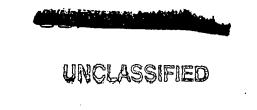
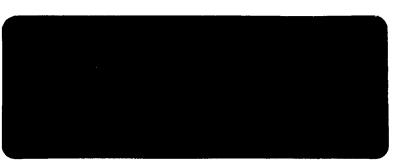
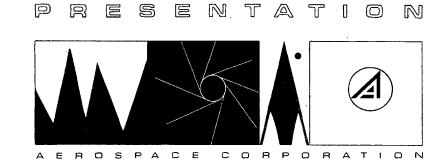
NRO APPROVED

AEROSPACE LIBRARY Document No. 1765-10806 Copy No. P 136


UNN


PORA

Z


9

84 (s

SYSTEMS RESEARCH AND PLANNING DIVISION

UNCLASSIFIED

B#130

• •

-

· •

۵	
	br -
RELEASE 1 JULY	2015

ų		
÷	UNCLASSIFI	ED

VAULT	NUMBER	
9 נת	706	

- DTOU		
TITLE	MOL	RENDEZ

LE	MOL	REAN.	DEZ	VU
1				

Ρ		R	E		S	5	E		N	T	•	Α	-	Γ	I	(D	1	N
$\underline{-}$		11	0	U	•	\sim	0	-	U	C	L.J		C	r 1	\sim	1	1		IN
Δ	F		\square	S		Δ	\square	F	С	\square		\square	\square		Δ	T	1	\square	NI

US

AUTHOR	L. M. WEEKS	DATE OCT. 15, 1964
AUDIENCE_	DR. B. P. LEONARD, DE	R. W. C. WILLIAMS,
	S. M. TENNANT, C. L.	OLSON
LOCATION	E. S. O.	
DISTORDUTE	ON CONTROLLED BY	I. WEEKS

۰.

DOWNGRADED AT 3 YEAR INTERVALS; DECLASSIFIED AFTER 12 YEARS. DOD DIR 5200.10

UNCLASSIFIED

ŧ

MJO: 5107-10 CCC: 2130

This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U.S.C., Sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.

·. ·

.

.

BRIEFING

NOL RENDEZVOUS

OUTLINE

SIAMESE TWIN ALTERNATIVE EXPERIMENT - RESUPPLY - 60 DAYS DOCKING CONSIDERATIONS MOL RELIABILITY ESTIMATES PRESENT INTEGRAL LAUNCH EXTENSIONS TITAN III GROWTH POTENTIAL THE INTEGRAL LAUNCH WITH TITAN III GROWTH SOME RENDEZVOUS PAYLOAD - DURATION CONFIGURATIONS A RENDEZVOUS RELIABILITY ESTIMATE MOL RENDEZVOUS MISSION MECHANICS IMPACT OF RENDEZVOUS ON TEST AND OPERATIONS AN EXPERIMENT ALLOCATION MOL RENDEZVOUS INCREMENTAL COST ESTIMATE A COST-EFFECTIVENESS COMPARISON OF RENDEZVOUS AND INTEGRAL LAUNCH IMPROVING LAUNCH VEHICLE CAPABILITY SOME SUMMARY RENDEZVOUS CONSIDERATIONS CONCLUSIONS ON MOL RENDEZVOUS SOME OTHER NATIONAL SPACE PROGRAMS **RECOMMENDATIONS AND ACTION ITEMS**

MOL RENDEZVOUS

RENDEZVOUS ALTERNATIVES

- A. SIAMESE TWIN
- B. EXPERIMENT RESUPPLY 60 DAYS

and the second second

MOL RENDEZVOUS ALTERNATE A SIAMESE TWINS

OBJECTIVE:

- TRADE ONE CREW MEMBER
- KEEP ONE CREW MEMBER ON ORBIT 45 TO 60 DAYS
- ONE SET EXP. FIRST 30 DAYS (3000#)
- ANOTHER SET EXP. SECOND 30 DAYS (~2000#)

CONFIGURATION:

- BAREST MINIMUM CHANGE TO MOL
- NO UMBILICAL OR COMPATIBLE DISPLAYS BETWEEN TARGET AND CHASER
- QUALIFIED SUB-SYSTEMS TO ONLY 30 DAYS

RENDEZVOUS ALTERNATE A (SIAMESE)

TARGET VEHICLE

• STANDARD MOL CONFIGURATION PLUS

/ DOCKING RING AND SHELL

/ RADAR TRANSPONDER

/ TUNNEL TO CHASER VEHICLE

• APPROXIMATE 3000# EXPERIMENTS

RENDEZVOUS ALTERNATE A (SIAMESE) CHASER VEHICLE

- STANDARD MOL CONFIGURATION PLUS
 - / 450 FPS EXTRA IN TRANSTAGE
 - 50 FPS DOCKING IN LABORATORY

.

- FORK AND SHELL DOCKING (MALE)
- GEMINI B RADAR
- / GEMINI B COMPUTER OPERATIVE IN RENDEZVOUS MODE

5 • • ·

/ TUNNEL

NRO APPROV RELEASE 1 JUL

/ OPTICS AND/OR TV FOR TERMINAL RENDEZVOUS AND DOCKING

. A star adde

• APPROXIMATELY 2000 POUNDS EXP. PAYLOAD

and the second second

RENDEZVOUS ALTERNATE A

and the second second

indiservors children

and the shirt of the

\$

a set in the set of the

SIAMESE TWIN - EXTRA VEHICULAR

.

MOL RENDEZVOUS

ALTERNATIVE B

LARGE EXPERIMENT (NAVY ?)

AND

RESUPPLY - 60 DAYS

APPROVE R ASE 1 JULY 2015	
$\left(\right)$	
	MOL RENDEZVOUS
	MISSION
	ALTERNATE B
	OBJECTIVE:
	• TO SHOW MILITARY MAN CAN OPERATE EQUIPMENT ON ORBIT ~60 DAYS
	CONFIGURATION: (TAIL TO TAIL DOCKING) • TARGET VEHICLE
	 60 DAY QUALIFIED ECS, EXPERIMENTS FEMALE DOCKING, TUNNEL, DISPLAYS FOR DOCKED CONFIGURATION 3000# EXPERIMENTS (NAVY)
	 CHASER VEHICLE (RESUPPLY) 45 TO 60 DAY QUALIFIED SUBSYSTEMS MALE DOCKING, TUNNEL, DISPLAYS, ETC. ~400 FPS EXTRA FUEL IN TRANSTAGE ~100 FPS DOCKING FUEL IN LABORATORY ~1000# ADDITIONAL EXPERIMENTS

÷

a state and she had the

190

RENDEZVOUS

TARGET VEHICLE CONFIGURATION

ALTERNATE B

• STANDARD MOL CONFIGURATION PLUS

/ DOCKING RING AND SHELL

NRO APPROVE RELEASE 1 JULY

/ RADAR TRANSPONDER (AGENA TARGET)

/ TUNNEL TO CHASE VEHICLE

/ DISPLAYS TO MONITOR CHASER VEHICLE

/ CONTROLS TO MONITOR CHASER VEHICLE

/ 60 DAY QUALIFIED ECS, EXPERIMENTS

/ TWO WAY VOICE LINK TO CHASER

TWO WAY DATA LINK TO CHASER

• APPROXIMATELY 3000# EXPERIMENTAL PAYLOAD

/ (SAY) NAVY EXPERIMENT

RENDEZVOUS

CHASER VEHICLE CONFIGURATION

ALTERNATE B

• STANDARD MOL CONFIGURATION PLUS

NRO APPROVI

/ 45 TO 60 DAY QUALIFIED ECS, POWER, ATTITUDE, EXPERIMENTS

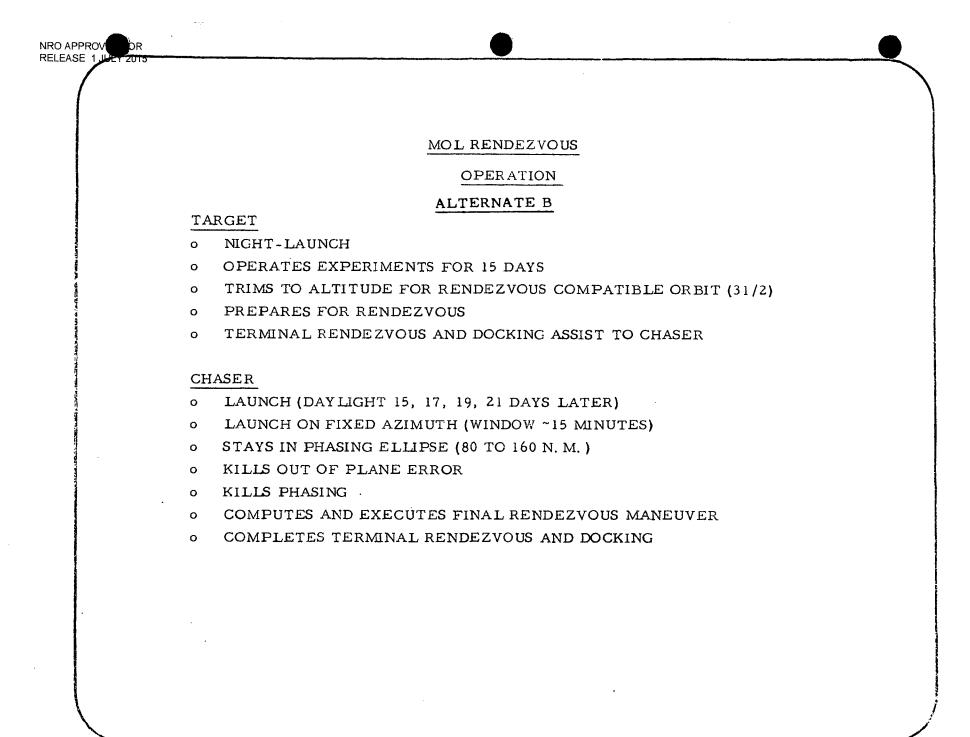
A Property and and a set of

/ 400 FPS EXTRA FUEL IN TRANSTAGE

100 FPS EXTRA DOCKING FUEL IN LABORATORY

~1000# EXPERIMENTS DIFFERENT FROM CHASER VEHICLE

EXPENDABLES FOR 45 DAYS DOCKED


FORK AND SHELL DOCKING (MALE)

/ GEMINI B RADAR INSTALLED

/ GEMINI B COMPUTER OPERATIVE IN RENDEZVOUS MODE

/ TUNNEL AND DISPLAYS TO OPERATE DOCKED CHASER

/ OPTICS AND/OR TV FOR TERMINAL RENDEZVOUS AND DOCKING

and the second second line and

MOL RENDEZVOUS

OPERATION (cont.)

1.000

日に見ている

ر. بر جو ویسو بر اور دو ا

TARGET AND CHASER DOCKED

- BOTH CREWS ASSESS SITUATION (POWER, ECS, ATTITUDE FUEL, EXPERIMENT STATUS)
- CREWS PREPARE TO SEPARATE AND DE-ORBIT APPROPRIATE CREW AND GEMINI B
- SEPARATE LABORATORIES (IF APPROPRIATE)
- ONE CREW CONTINUES TO OPERATE EXPERIMENTS IN LABORATORIES #1 AND #2

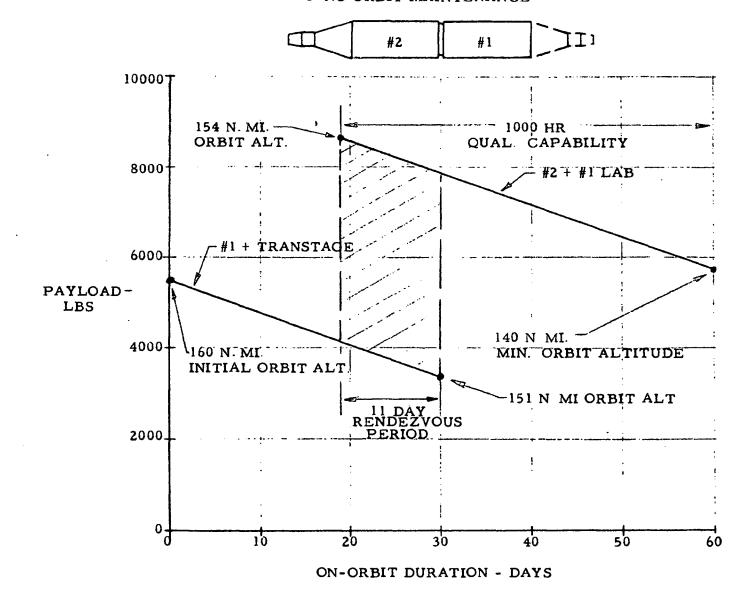
• MONITOR AND OPERATE

/ DUAL ATTITUDE SYSTEM

- / DUAL ECS SYSTEM
- / DUAL POWER SYSTEM

/ REMAINING GEMINI B

NRO APPROVE OR RELEASE 1 JULY 2015


LOAD ANALYSIS - RENDEZVOUS

BASELINE	TARGET VEHI	CLE			CHASE VEHICLE
205	18 45 100 8 12 22	205	COMMUNICATIONS VOICE INSTRUMENTATION DATA MGT. TLM XMITTERS COMMAND TRACKING		18 20
236	. 59		ATTITUDE CONTROL 25% DUTY CYCLE	(1251). •	
362	207.5 87.5	295	EC/LS (SHIRT SLEEVE) ATM CONTROL THERMAL CONTROL	87 5	
150	,		GEMINI	150	
120		120	LIGHTING		
250 110	250 110	360	EXPERIMENTS COMPUTER		
60		60	DISPLAY		•
60		<u>60</u>	MISCELLANEOUS	60	
1,553	<u>1,159</u>		TOTALS	335.5	
			13;		

行業のたけ

MOL RENDEZVOUS CONFIGURATION

PAYLOAD VS. ON-ORBIT DURATION SUBSYSTEMS QUALIFIED TO 1000 HR. NO ORBIT MAINTENANCE

NRO APPROVED FOR RELEASE 1 JULY 2015

A

DOCKING KIT

an na arteresena astronomente estru de la **sec**ienza anteres estru de la seciencia de la seciencia de la seciencia de

WEIGHT ESTIMATE

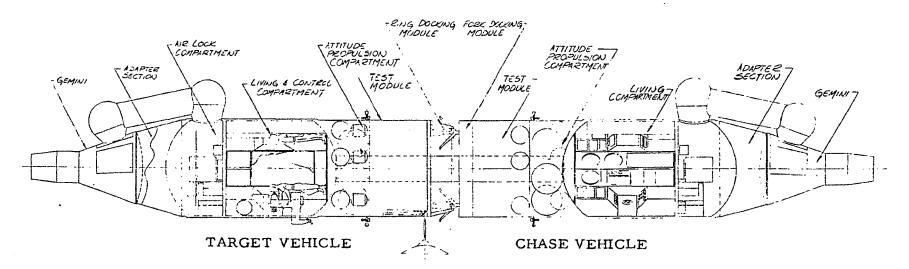
ITEM	TARGET VEH. (LBS)/	CHASE VEH. (LBS)
SHELL STRUCTURE	410	410
TRANSTAGE SEPARATION PROVISIONS	35	35
TUNNELS AND SEALS	. 44	44
N ₂ TANKAGE AND SUPPORTS		65
02 AND N2 PLUMBING	10	10
PROVISIONS FOR CRYOGENIC MANIFOLDING	150	150
DOCKING MECHANISM SUPPORTS (ARMS)	90	~ ~
DOCKING ARM ASSEMBLY (4)	80	
RING SEGMENTS (4)		30
DOCKING CONTROL PACKÀGE AND PLUMBING	6	
INSTALLATION PROVISIONS	10	4
ELECTRICAL DISTRIBUTION (HARNESS ASSEM.)	15	17
MONITOR & CONTROL (HARNESS ASSEM.)	30	30
ELECTRICAL DISTRIBUTION (UMBILICAL)	15	
MONITOR & CONTROL (UMBILICAL)	15	
CONTROL & MONITORING INSTRUMENTATION	N 60	60
REMOTE TV CAMERAS		40
RENDEZVOUS RADAR & CONTROLS		120
HATCHES & MECHANISM	20	20
TOTAL KIT WEIGHT	990	1,035

.

MOL RENDEZVOUS AND DOCKING WEIGHT PENALTIES

ITEM	TARGET VEH.	
• HARDWARE 🛆 WT.		
REMOVE TEST SECTION	-410	-410
ADD DOCKING SECTION	910	795
CONTROL & MONITORING INST	TRUMENTATION 60	60
HATCHES & MECHANISMS	20	20
RENDEZVOUS RADAR & CONTI	ROLS (GEM. B) -	120
REMOTE TV CAMERAS	-	40
NET HARDWARE TOTAL	580	625
o EXPENDABLES∆W(NITROGEN LE. MAKE-UP)	AKAGE -	85
o PROPELLANT △ W		
PLANE & PHASE CHANGE (TRANSTAGE - 450 FPS)	-	1120
FINAL DOCKING (LABORATOR	Y - 50 FPS) -	150
TOTAL \triangle W	580	1980

ć


DOCKING CONSIDERATIONS

.

د

0

IMPACT OF DOCKING ON BASELINE VEHICLE

ESTIMATED WEIGHT PENALTY

FOR RING AND FORK CONCEPT (CONSIDERED A REPRESENTATIVE SYSTEM)

- TARGET VEHICLE

250
110
10
370 LBS
320
110
30
460 LBS

an an the second and the second and the second s

1.00

Surface and an included

IMPACT OF DOCKING ON BASELINE VEHICLE

• BASELINE DOCKING CONCEPT

NRO APPROV

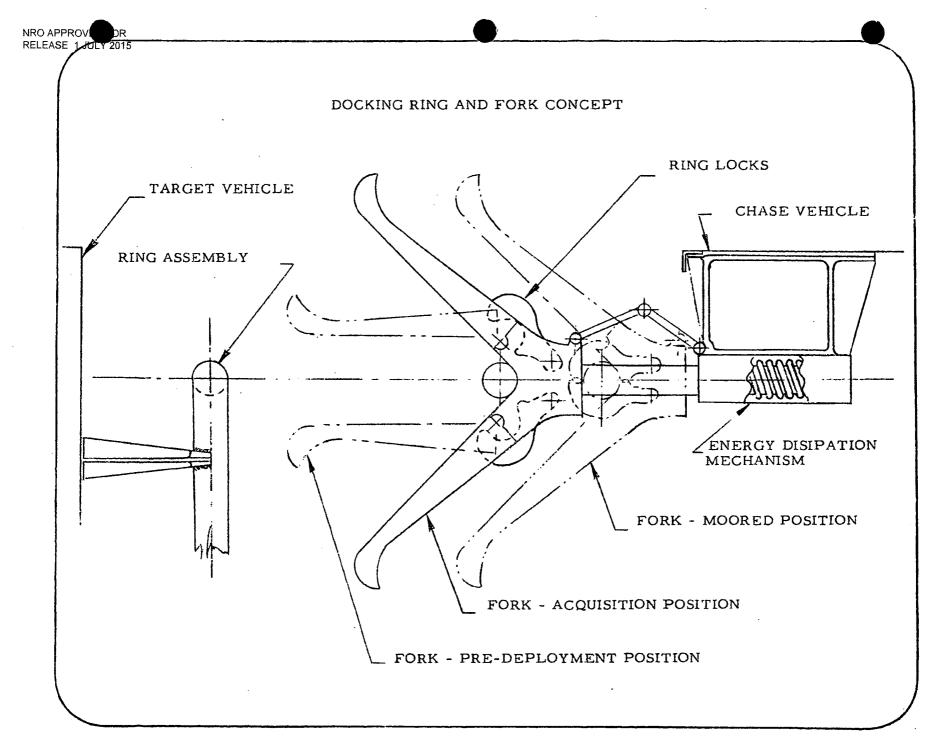
TAIL - TO - TAIL SELECTED OVER OTHER METHODS

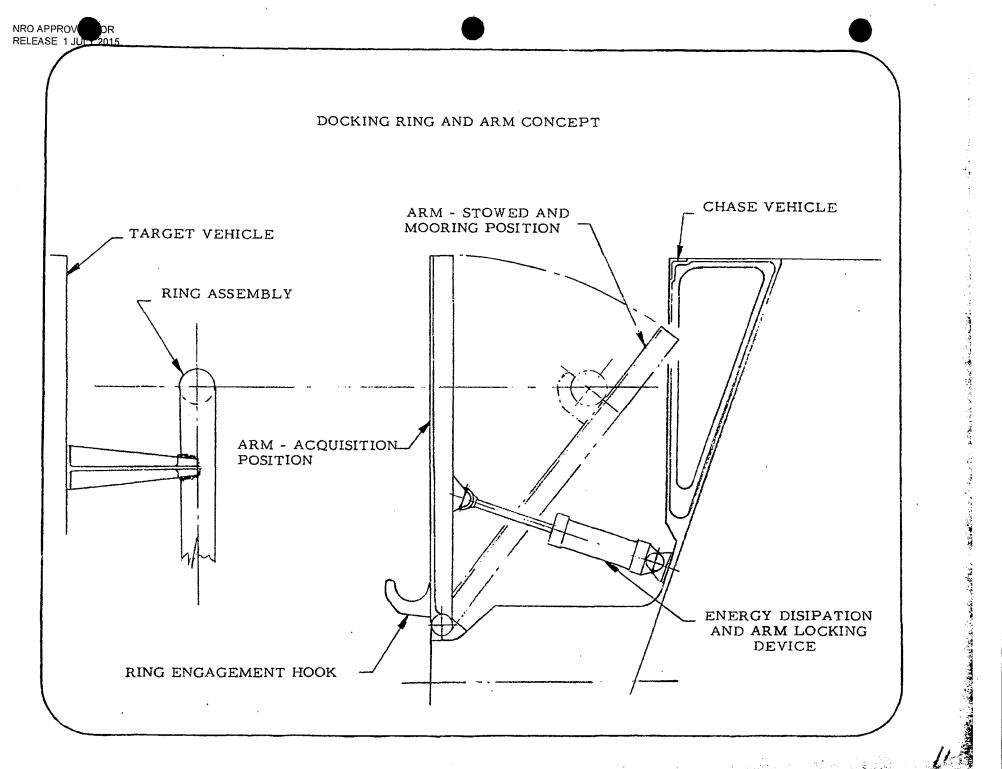
- REQUIRES MINIMUM MODIFICATIONS TO GEMINI
- PROVIDES FOR EASY CREW TRANSFER BETWEEN VEHICLES
- HAS MINIMUM ON-ORBIT DRAG CONFIGURATION
- DOCKING MANEUVER IS CONSIDERED RELATIVELY SIMPLE
- PROVIDES UNENCUMBERED SEPARATION OF GEMINI FROM LABORATORY VEHICLE

DOCKING SYSTEM REQUIREMENTS DISSIPATE IMPACT ENERGY WITH LOW ACCELERATIONS IMMEDIATE ACQUISITION OF OTHER VEHICLE ACCURATE CENTERING AND ALIGNMENT POSITIVE LOCKING TOGETHER OF VEHICLES FAST AND RELIABLE RELEASE

• CONCEPTS PROPOSED

0

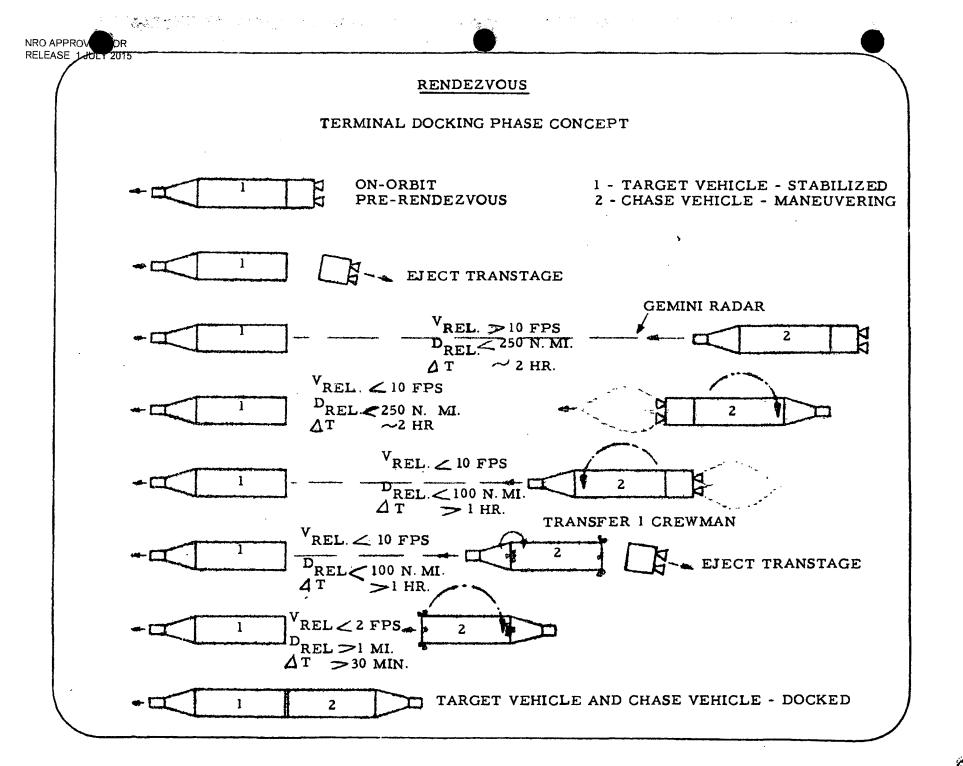

RING AND FORK MECHANISM (MAC)


- PASSIVE RING ON TARGET VEHICLE
- ACQUISITION FORK AND ENERGY DISSIPATION DEVICE ON CHASE VEHICLE

RING AND MOVABLE ARM MECHANISM (MMC)

- PASSIVE RING ON TARGET VEHICLE
- ACQUISITION ARM AND ENERGY DISSIPATION DEVICE ON CHASE VEHICLE

「「神」に、「「神」


NRO APPROVE

MOL WEIGHT SUMMARY RENDEZVOUS CONFIGURATION

		TARGET VEHICLE	CHASE VEHICLE
GEMINI B + RETRO		6,000	6,000
LAB		7,910	8,920
STRUCTURE	2,840	2,84	10
RCS	560	50	50
ELECTRICAL POWER (FUEL CELL)	2,100	2,10	00
COMMUNICATIONS	200	20	
ECS	950	9!	50
INSTRUMENTATION	130		30
PERSONNEL ACCOMMODATIONS	740	74	10
DOCKING RING + PROVISIONS (TARGET)	390		
DOCKING FORK + PROVISIONS (CHASE)		1,40	00
DISCRETIONARY PAYLOAD		5,490	4, 480
SPARE PARTS + MAINT. EQUIPMENT.	140		40
ACS PROPELLANTS	260	2	60
SERVICE ITEMS	1,760	1,7	60
EXPERIMENT-WEIGHT AVAILABLE	3, 330	2,3	20
CONTINGENCY		2,000	2,000
ON-ORBIT WEIGHT		21,400	21,400
EXPENDABLES RATE (FOR 30 DAY MISSION)	70#/DAY		

41.00 2 8.

فعهر بذ

and Charles I ...

一日時時間

A STATEMENT AND A STATEMENT

 $A_{i}(\theta)_{A_{i}} \in$

\$

MOL

요즘 같은 것이 아주 정말 가지지지 않는 것

and the second second

THE RELIABILITY (EFFECTIVENESS)

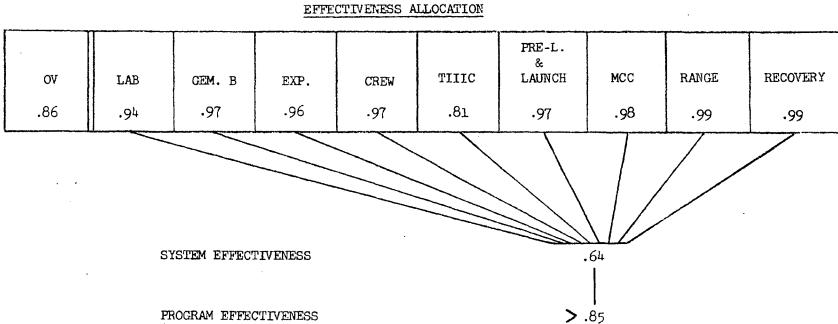
ESTIMATES

NRO APPROVIDE RELEASE JULY 2015

EFFECTIVENESS ALLOCATIONS

				·			·				
	OV (Derived)	Lab.	GEMINI B	Experi- ments	Crew & Crew Equip.		Pre- Launch & Launch & Launch	Mission Control	Range Support	Recovery FORCES	H PARA.
SAFETY (NO CASUALTY)	. 9918	. 9994	. 9858		. 9959	. 9969	. 9980	. 9968	. 9988	. 9989	. 9712
PRELAUNCH	9 ³ 88	9 ⁵	9 ⁴	9 ⁵	9 ⁴	9 ³	9 ³	9 ⁴	9 ⁵		. 9976
BOOST	9 ² 38	9 ⁴	9 ² 5	9 ⁴	9 ³	(9 ² 8)-	9 ³	9 ³	9 ⁴	9 ⁵	. 9897
ORBITAL	9 ² 82	(9 ³ 5)	9 ⁴	9 ⁴	9 ³	9 ⁴ *		9 ³	9 ⁴ ·	9 ⁵	.9971
DEORBIT			9 ² 5		9 ³			9 ³	9 ³	9 ⁵	. 9920
RECOVERY			9 ² 5		9 ³			9 ⁴		9 ³ =	. 9929
MISSION COMP. (NO ABORT)	. 9561	79889		. 9890	. 9919	. 8293	. 9850	. 9963	. 9992	. 9989	. 7752
PRELAUNCH	9 ³ 7	9 ⁴	9 ⁴	9 ⁵	9 ⁴	9 ³	. 99	9 ³ 5	9 ⁴		. 9881
BOOST	. 983	9 ³	(. 99)	9 ³	9 ² 5	(. 831)	9 ² 5	9 ³	9 ³ 5	9 ⁵	. 8123
ORBITAL	. 973	(. 99)	9 ² 5	. 99	9 ³	9^{3} *		9 ³	9 ⁴	9 ⁵	. 9719
DEORBIT	• • • •		9 ³		9 ³			9 ³	9 ⁴	9 ⁵	9969
RECOVERY			9 ³		9 ³			9 ⁴		9 ³	9969
DES ADEQUACY (NO DEGRAD)		. 9499	. 9987	. 9790	. 9834	. 9880	. 9890	. 9928	. 9939	. 9949	. 8752
PRELAUNCH	9 ³ 3	9 ⁵	94 93 9	9 ⁵	9 ³ 5	9 ³	. 99	9 ⁴	9 ⁵		. 9883
BOOST	9 ² 69	9 ⁴	1	9 ³	9 ³	, 99	9 ³	9 ³	9 ² 5	9 ⁵	9799
ORBITAL	. 9206	. 95	9 ⁴	98	. 99	9 ³ *		9 ² 5	9 ³	9 ⁵	9151
DEORBIT			9 ⁴		9 ⁴			9 ³	9 ⁴	9 ⁵	9987
RECOVERY			93	[.]	9 ² 5			9 ⁴		9 ² 5	9889
π segments	. 8696	. 9387 9 ³	. 9676		· 9714 9 ³	. 8167	. 9722 9 ² 5	. 9859 9 ³	. 9919 925	. 9927 925	<u> </u>
AVAILABILITY	9 ²	95	93	925	97	9 ² 5	9~5	95	9~5	9~5	
SEGMENT E	. 8609	. 9378	. 9667	. 9629	. 9704	. 8126	. 9673	. 9849	. 9869	. 9877	. 6392
* TRANSTAGE AFTER INJECTION $(77 = .9989, A = 9^3)$											

.


× 1.

4

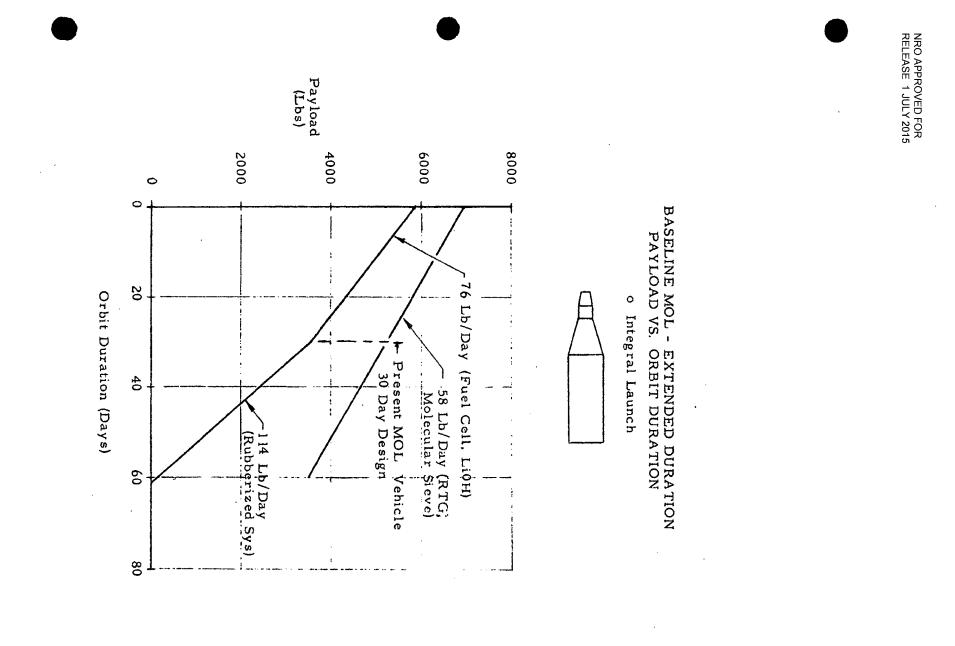
12

「「「「「「「「」」」」

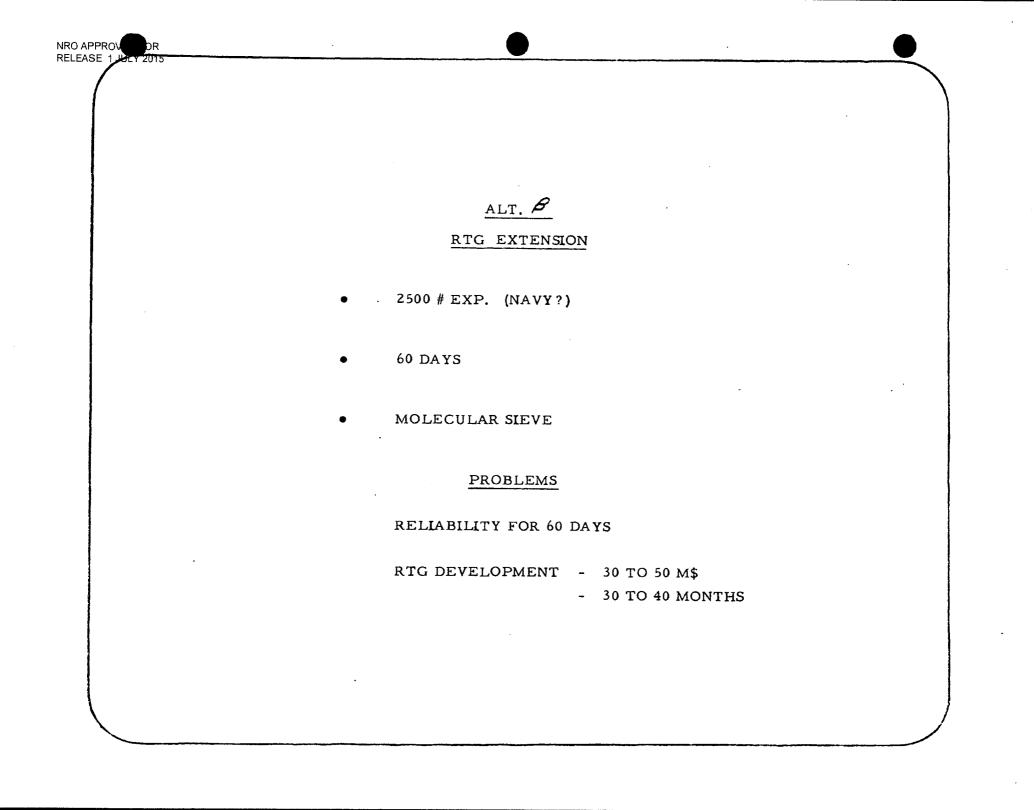
NRO APPROVIDOR RELEASE 1 JULY 2015

(3 SUCCESSES IN 6 MANNED MISSIONS)

FIGURE 10


NRO APPROV THE PRESENT INTEGRAL LAUNCH EXTENSIONS ALT. А CREW DURATION WITH EXPERIMENTS THE RADIOISOTOPE THERMO-ELECTRIC GENERATOR B EXTENSION (RTG) THE POWER DOWN APPROACH Х δ THE SEVERE WEIGHT CONTROL APPROACH

and the second states of the second states and the second states and the second states and the second states a


APPROLOOR ASE 1 JUN-2015	
$\left(\right)$	
	INTEGRAL ALT.
	CREW DURATION WITHOUT EXP.
	• PRESENT MOL CAN GO \sim 60 DAYS WITH \sim 400 # EXP.
	• BIOMEDICAL ONLY
	 PRESENT MOL CAN LOAD 60-DAY EXPENDABLES IN MOL
	PRESENT 30-DAY - SYSTEM RELIABILITY ~ . 64
	60-DAY - REQUIRES MUCH IMPROVEMENT (MAINTENANCE - ETR)

1.1

1

Č.

ALT. Y

 C_{2}

ALL STREET AND

THE POWER-DOWN APPROACH

LABORATORY ELECTRICAL LOAD ANALYSIS

LOAD

NRO APPRO RELEASE 1 J

WATTS

	STANDBY	AVE.	MIN.	PEAK	EMERGENCY
COMM., INSTR., DATA MGT.		205	171	367	171
ATTITUDE CONTROL	232	232	232	260	0
LIGHTING	60	120	60	120	60
E.C. & L.S.	420	540	420	655	420
DISPLAY	5	10	5	15	5
MISCELLANEOUS	30	60	30	90	0
GEMINI	200	200	100	600	400
EXPERIMENTS	136	250	136	976	0
TOTAL	1,254	1,617	1,154	3,092	1,056

مكالكة فكسوفند وأكراب أنجل المربي المواجعة فيتحرك والمراجع والمراجع والمتحال المتحار والمراجع والمراجع والمراجع

STAN A MARKET ALCONG

NRO APPROV

ALT.

`

THE POWER-DOWN APPROACH

	MOL AVE. PWR.	POWER DOWN
COMM. INSTR. & DATA MGMT.	205	100
ATTITUDE CONTROL	232	100
LIGHTING	120	80
ECS AND LSS	540	320
DISPLAY	10	10
MISCELLANEOUS	60	60
GEMINI B	200	200
TRANSTAGE	200	
EXPERIMENTS	250	100
	1,817 WATTS	970 WATTS

SÁVING OF 670 #

. . .

NRO APPRO DR RELEASE 1 JULI 2015

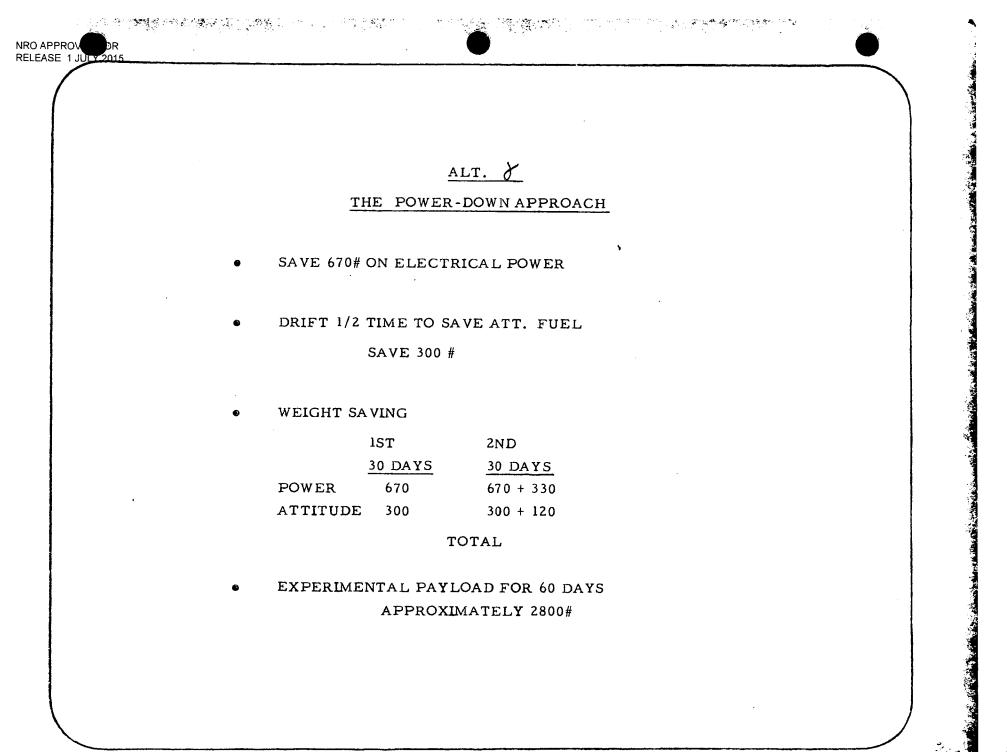
ALT.

BACKGROUND

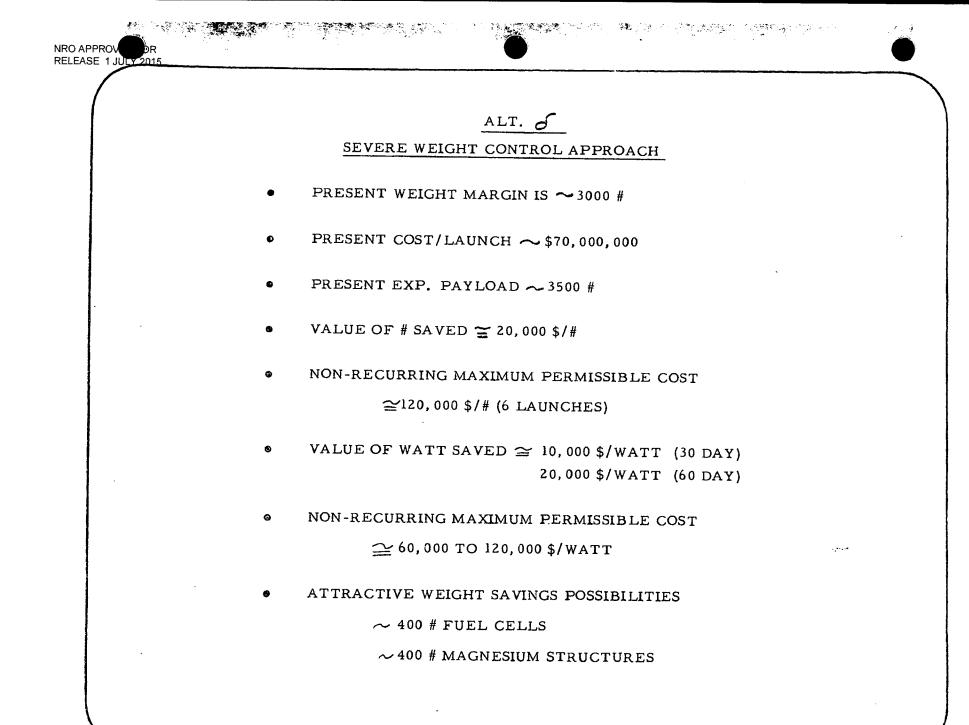
EXPENDABLES FOR BASIC MOL VEHICLE

(30 DAY + 10% 160 N.M. ORBIT ALT.)

2 MAN CREW


ITEM	EXPENDABLE (LBS)	TANKS, ETC. (LBS)
PROPELLANTS	360	128
REACTANTS	- ,	
• 0 ₂	1,103	347
H ₂	138	307
ATMOSPHERE		
PRIMARY O2	340	132
SECONDARY (H. P.) O2	21	68
LITHIUM HYDROXIDE AND ACTIVATED CHARC.	215	25
WATER	16	4
WATER PURIFYING CHEM.	3	·
FOOD	121	12
CLEANING TISSUES	12	2
DISPOSABLE CLOTHING	12	2
TOTAL	2,341	1,027
RATE OF EXPENDITURE	78 LBS/DAY	34 LBS/DAY

"RUBBARIZED" EXPENDABLES


112 LBS/DAY

SHALL ...

and the second second

and the second second

and the second second

MOL FUEL CELL POWER SYSTEM SUMMARY

•

	PRATT A	ND WHITNEY	GENERA	L ELECTRIC	ALLIS CHALMERS
	"Apollo" (400 Hr.)	1,000 Hour	"Gemini" (400 Hr.)		1,000 Hour
WEIGHT (LBS:)	4110	3472	3360	2982	2741
VOLUME (FT. ³)	156.8	131.6	112.4	102.8	93.8
DEVELOPMENT					
FUNDING TO DATE	≈34 M		≈20 M		≈4.5 M
HARDWARE STATUS	Qual. In	Proposal	Qual. In	Presently In	In Design
	Dec. 64	to NASA	Oct. 64	Life Test	(Funded)
PRODUCTION CAPABILITY	Productio	n Facilities	Productio	on Faciliti es	?
	Producing	g "Apollo" F.C.	Producin	g "Gemini" F.C.	

BASELINE: "GEMINI" FUEL CELL

NRO APPROV RELEASE 1 JUE

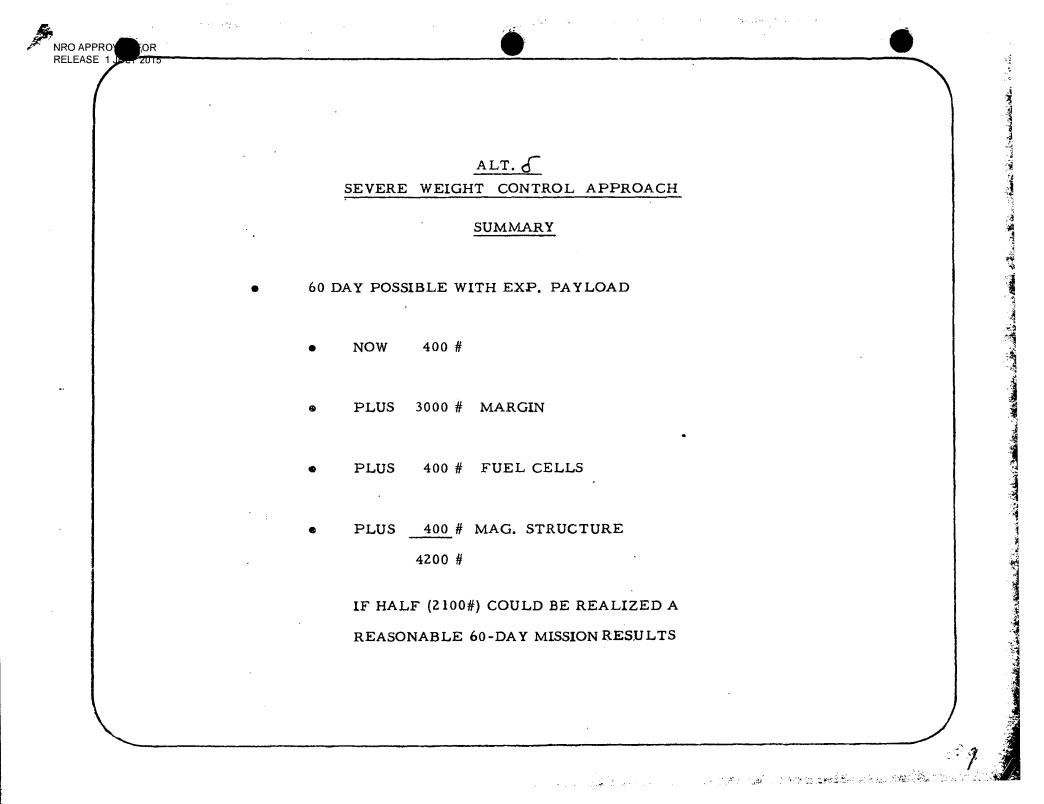
DR

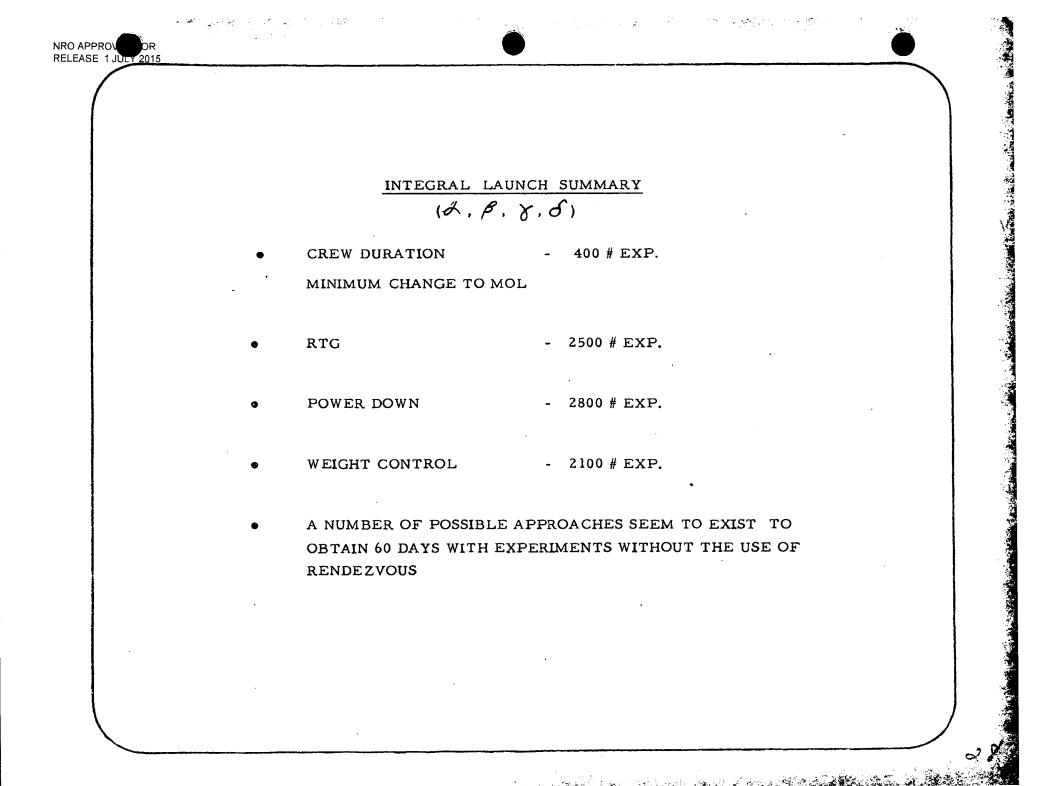
NRO APPROV

ALT.

譯作 소송 방법은 신문 방법에서 이어졌다. 이 이 이 사람들은 이 이 나는 물이 이 사람이가 물었다. 것이 가 가

1,000 HOUR FUEL CELL STATUS


GENERAL ELECTRIC


FUEL CELL TEST PROGRAM

STACK	AVE. LOAD AMPS/STACK	COOLANT INLET TEMP. F.	TEST HOURS	COMMENTS
83	3K	75	820	9-25-64 STILL ON TEST
84	5K	75	446	9-25-64 STILL ON TEST
82A	5	75	648	9-25-64 STILL ON TEST
• R4	5/15	75	735	9-25-64 STILL ON TEST
R3	5	62	891	9-25-64 STILL ON TEST
224	5	75	900	9-25-64 STILL ON TEST
241	5	75	785	9-24-64 FAILED
257	5	75	692	9-25-64 STILL ON TEST
SECTION	2 1			
11	3.1	75	715	0.2 VOLTAGE DROP STILL ON TEST

The second second of the second s

and the second second

\$

.

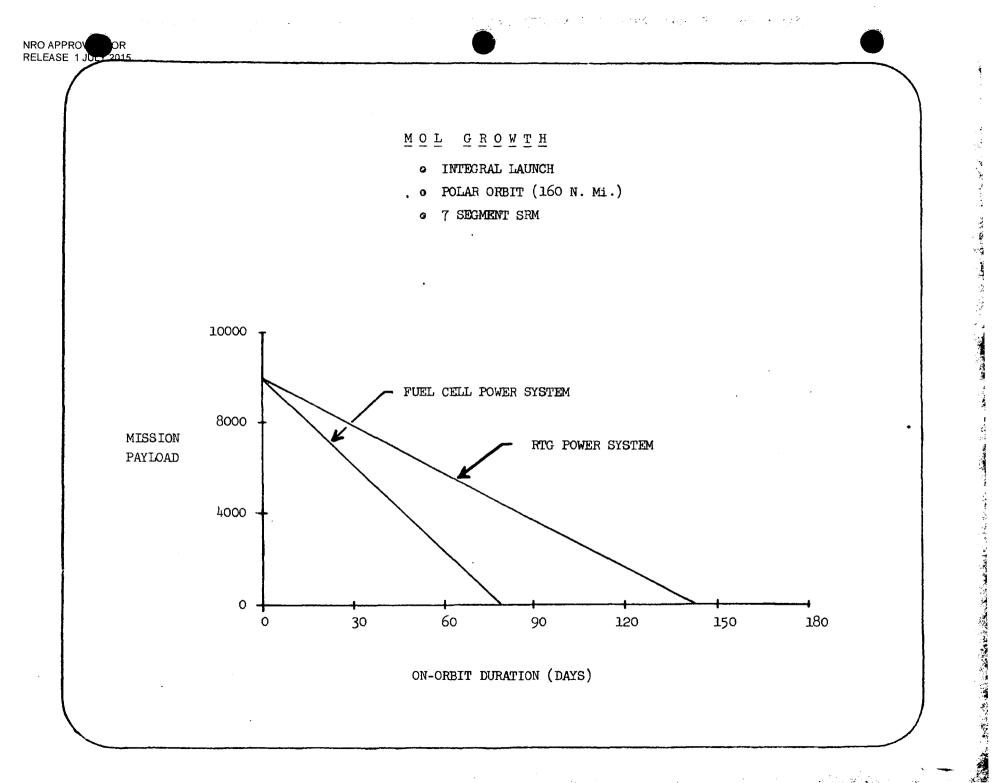
TITAN IIIC GROWTH POTENTIAL

. •

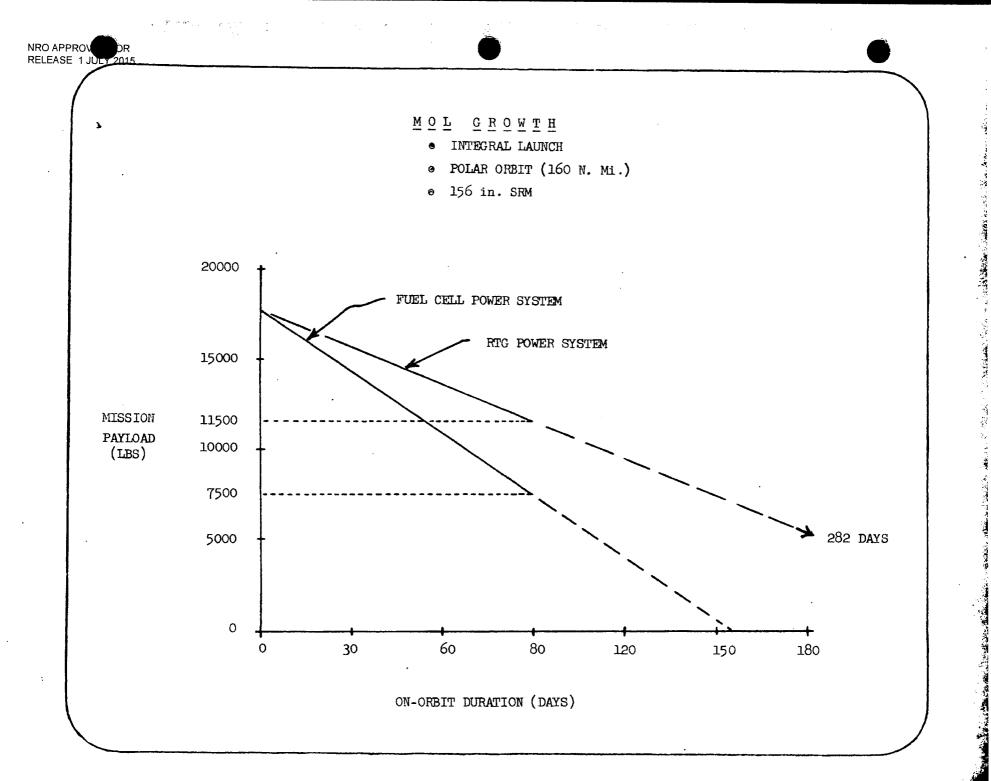
3

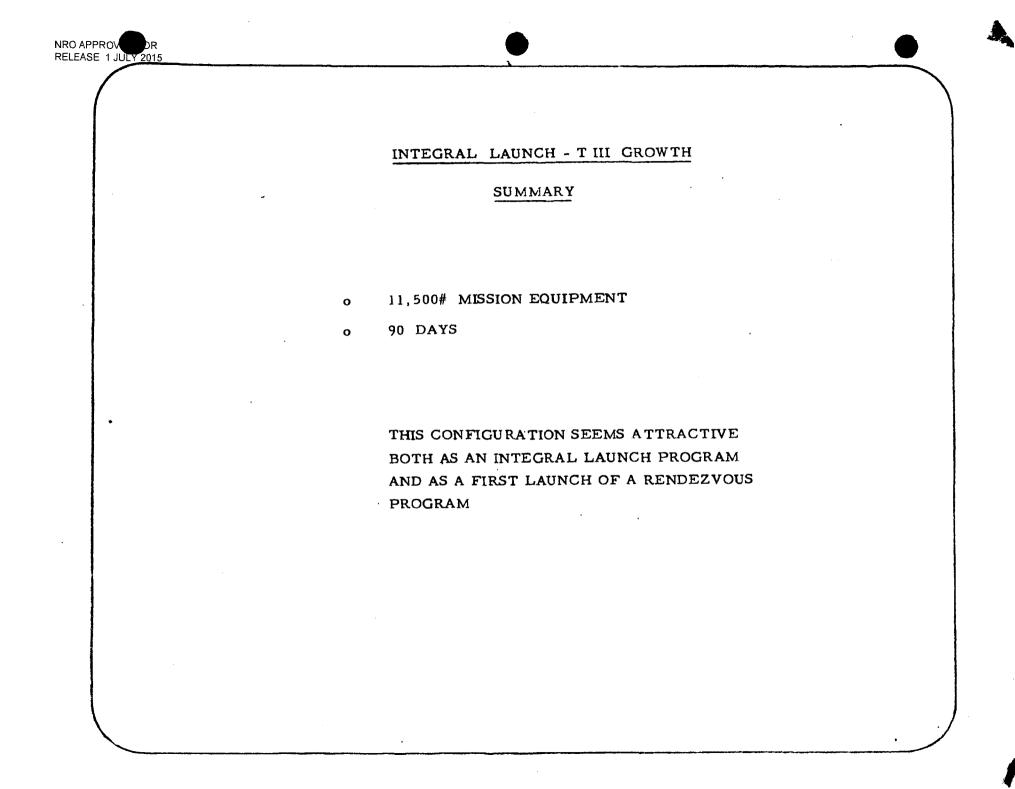
VEHICLE	MINIMUM PERFORMANCE PAYLOAD - LB			
CONFIGURATION	EAST AMR	SOUTH PMR		
	100 N.M. ORBIT	100 N.M. ORBIT		
STANDARD TITAN IIIC	23, 800	19, 550		
TITAN IIIC/6 SEGMENT SOLID MOTORS	28, 830	23, 520		
TITAN HIC/7 SEGMENT SOLID MOTORS	31,450	25,700		
• TITAN IIIC/156 IN. MOTORS	39, 700	32,700		
		• .		

e .


INTEGRAL LAUNCH

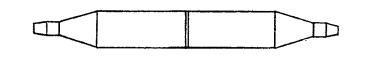
ъ


WITH

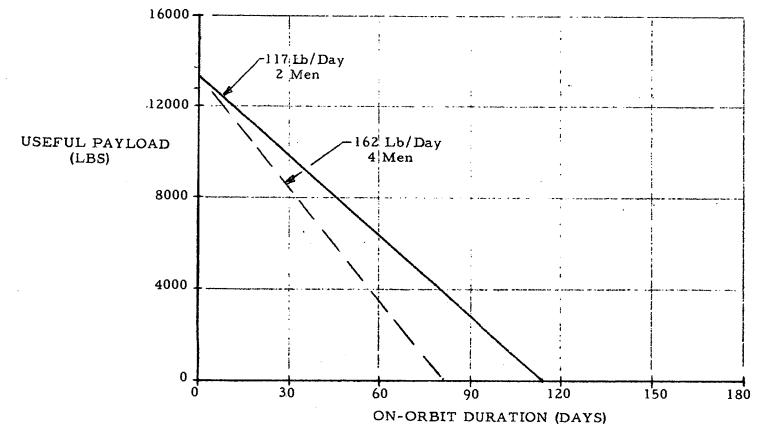

.

GROWTH TITAN III

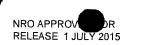
an la carta da se


SOME RENDEZVOUS PAYLOAD - DURATION

CONFIGURATIONS

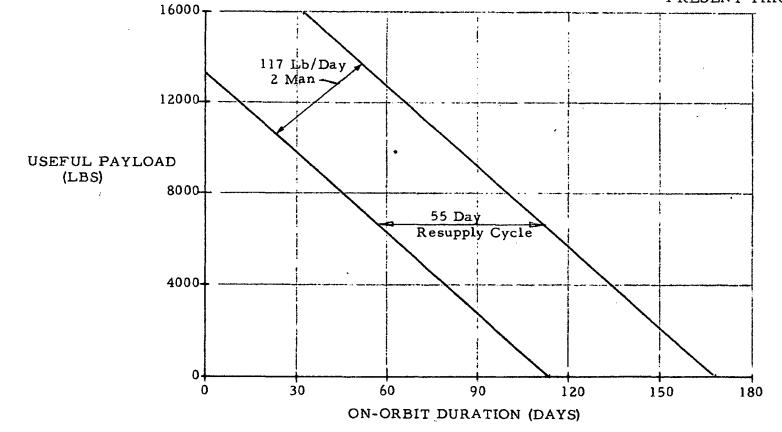

.

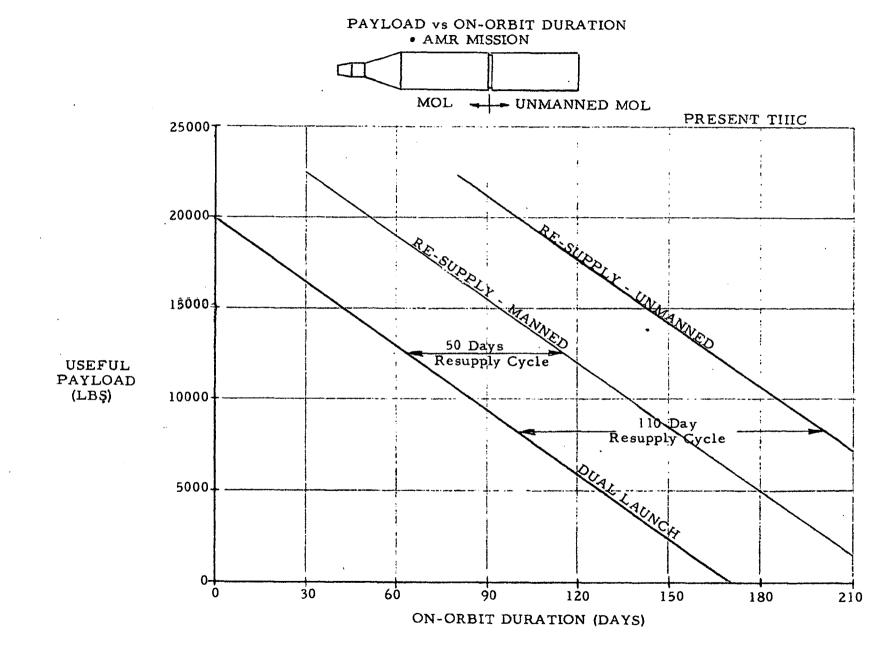
PAYLOAD vs ON-ORBIT DURATION


• DUAL LAUNCH MISSION

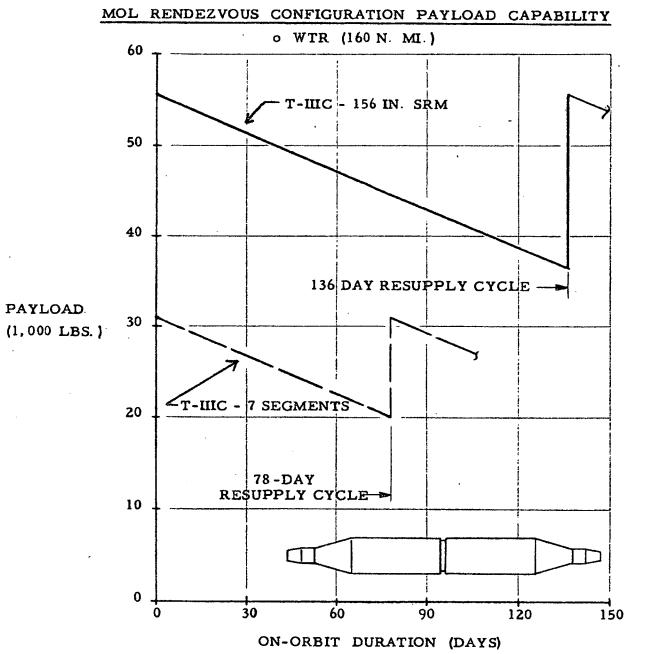
Ø

PAYLOAD vs ON-ORBIT DURATION .


• RE-SUPPLY MISSION


PRESENT THIC

з



÷

「日本」の「日本」

L

NRO APPROVED DR RELEASE 1 JULY 2015

3

A RENDEZVOUS RELIABILITY ESTIMATE

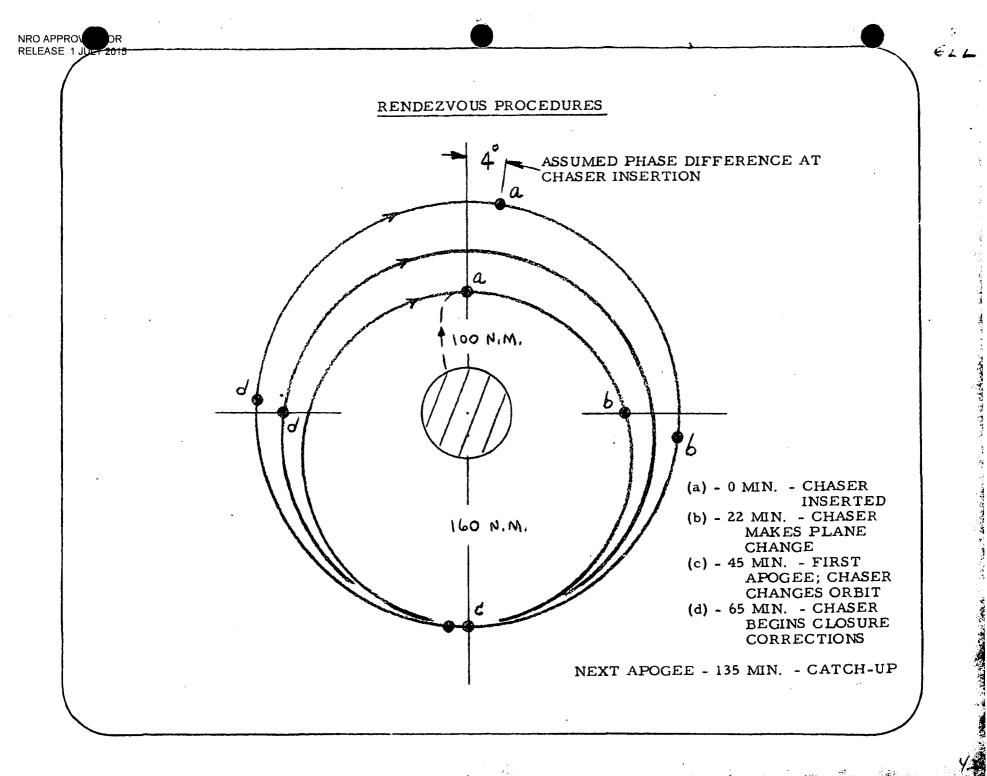
	TARGET	CHASER
	01	01
LAUNCH VEHICLE	. 81	. 81
LAB. (30 DAYS)	. 94	. 94
GEMINI B	. 97	. 97
CREW	. 97	. 97
PRE-LAUNCH AND LAUNCH	. 97	. 97
LAUNCH IN 15 MINUTE WINDOW		.97 SAY
RENDEZVOUS AND DOCK	~	.95 SAY
	. 69	. 64

COMBINED

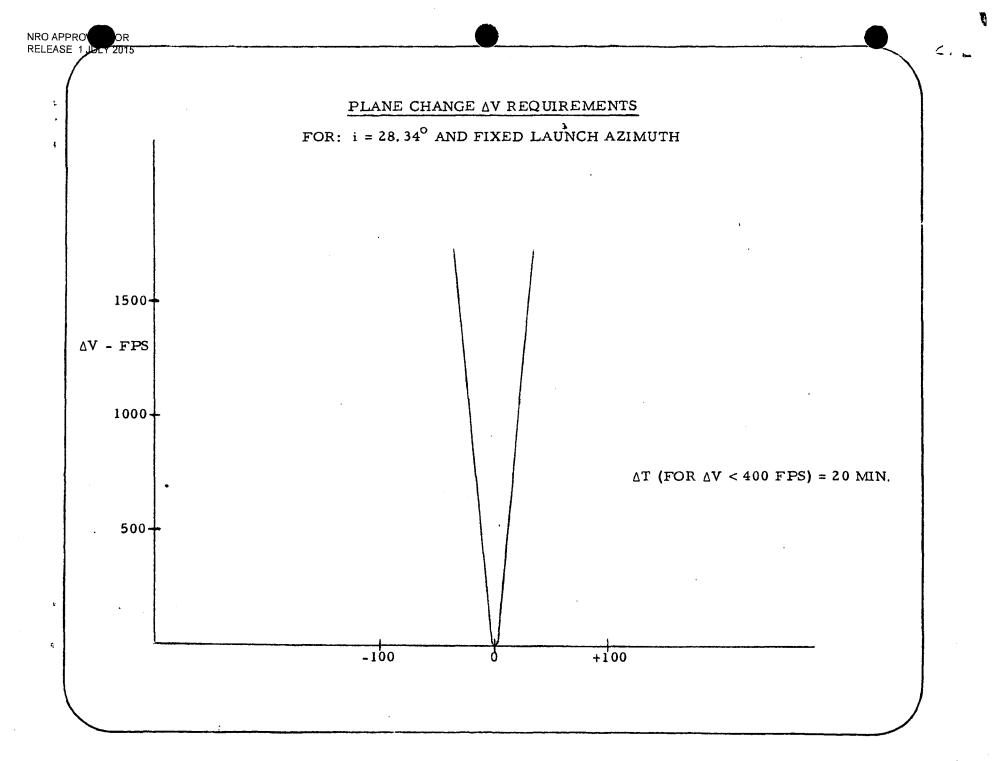
ないので、「「「「「」」」というというというできた。

Lac Street -

..44

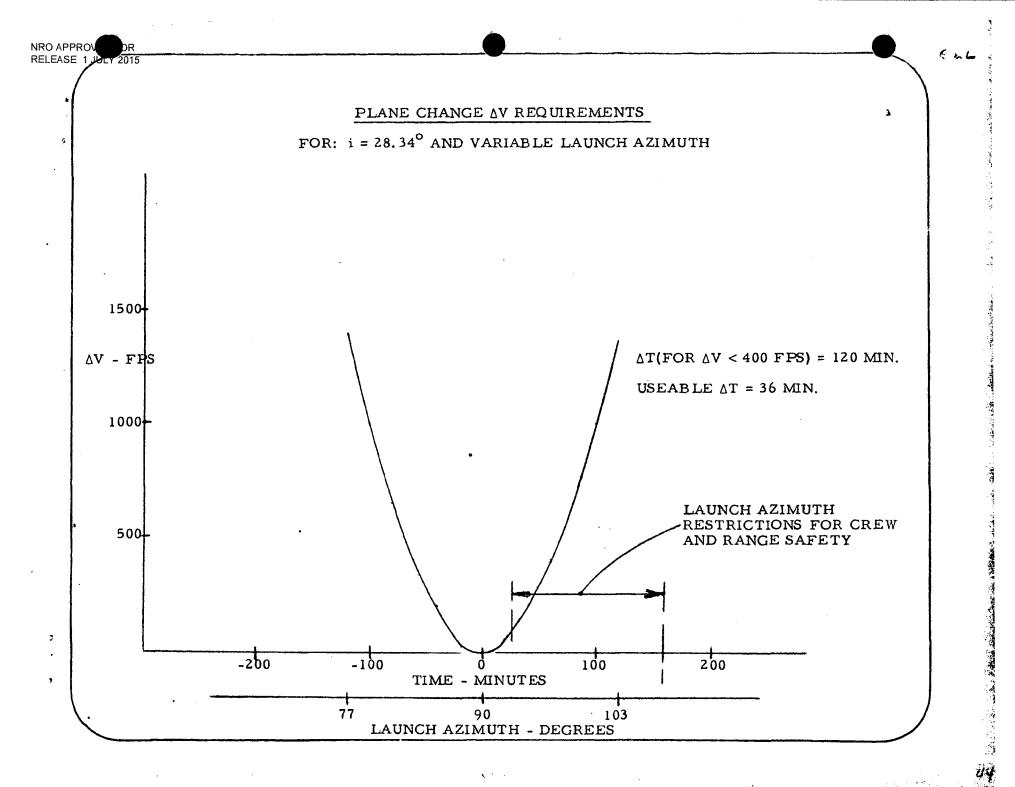

EXP., MCC, RANGE, RECOVERY OMMITTED

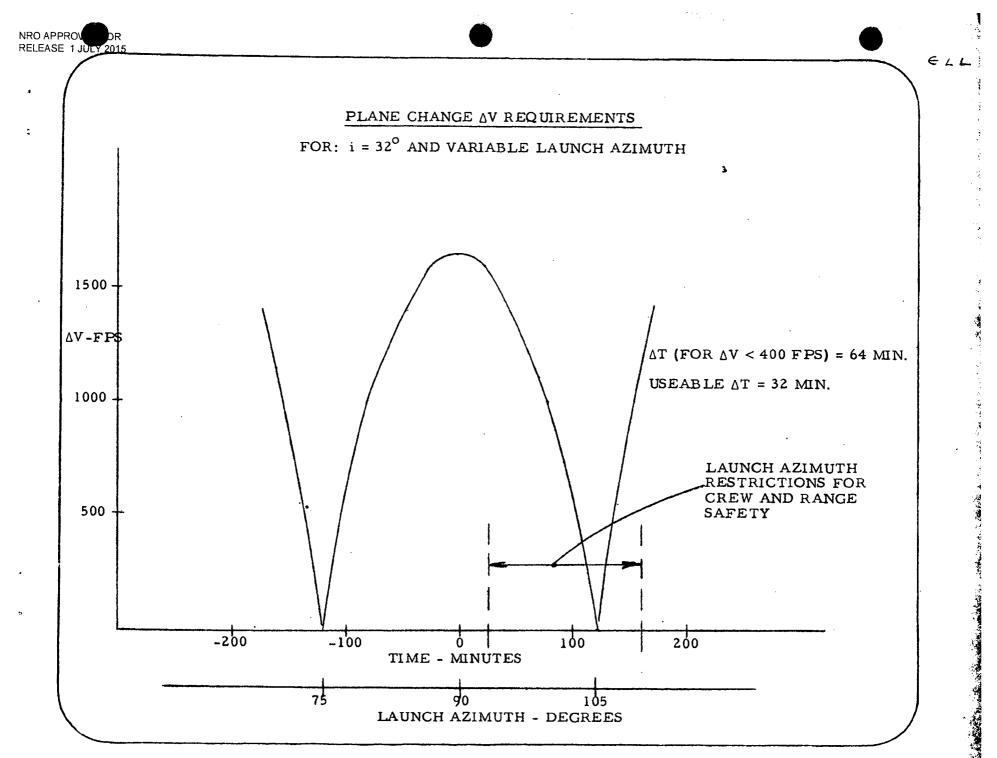
MOL RENDEZVOUS MISSION MECHANICS


3

- PROCEDURES
- LAUNCH WINDOWS
- GROUND SUPPORT
- CONCLUSIONS
- RECOMMENDATIONS FOR FURTHER WORK

.




.

λ.

.

LAUNCH WINDOWS IN 30-DAY PERIOD

FOR i = 28.34°; ΔV (PLANE CHANGE) = 400 FPS

LAUNCH FROM ETR

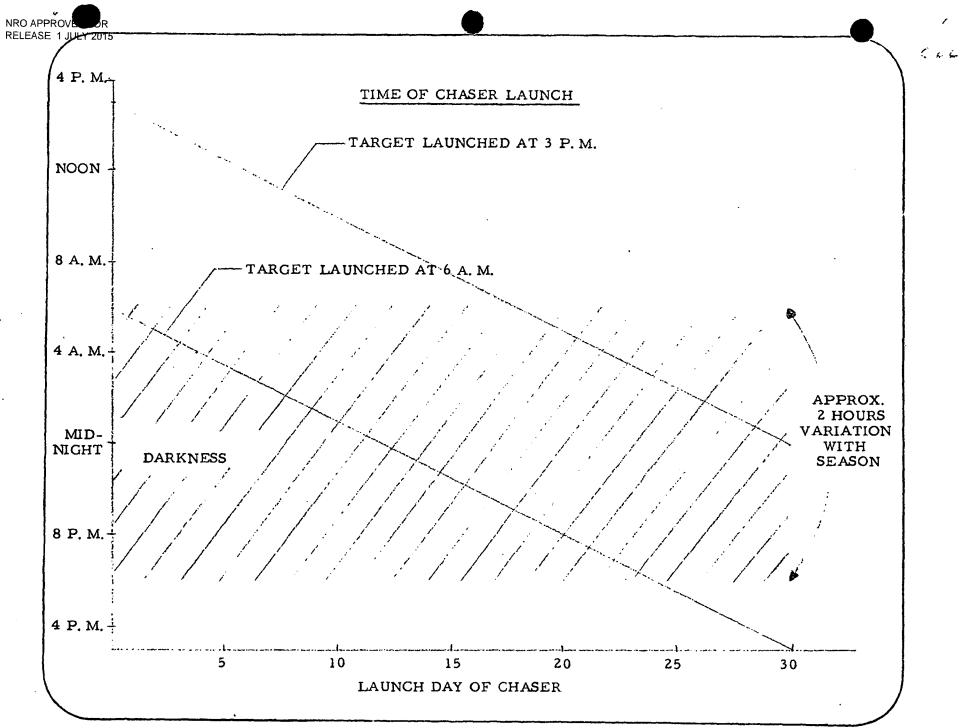
	MAXIM 1 DAY		TO CATCI 3 DAYS	
AVERAGE NUMBER OF LAUNCH-DAYS	≈ ₁₈	≈25	30	30
AVERAGE LENGTH OF LAUNCH WINDOW (MIN.)	≈12	≈17	≊21	36
RANGE OF LAUNCH WINDOWS (MIN.)	0-17	0-36	0-36	36 (CONSTANT) •
% NIGHT LAUNCHES - A. M. TARGET LAUNCH - P. M. TARGET LAUNCH	≈70% ≈30%	≈70% ≈30%	≈7 0% ≈3 0%	≈7 0% ≈3 0%

ELL

NRO APPROV

RENDEZVOUS WINDOWS

ALLOWABLE PLANE CHANGE $\Delta V = 400 \text{ fps}$

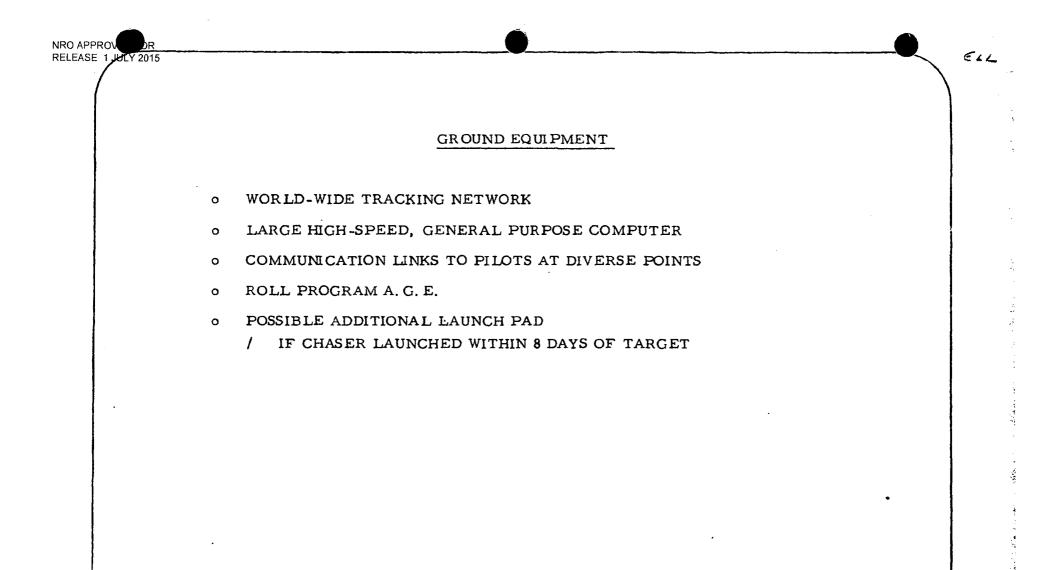

30 DAY PERIOD

	VARIABLE LAUNCH AZIMUTH i = 28.34° *	FIXED LAUNCH AZIMUTH $i \cong 32^{\circ} **$
TYPICAL NUMBER OF LAUNCH DAYS		
FOR 1 DAY CATCH-UP	18 DAYS	10 DAYS
FOR 2 DAY CATCH-UP	25 DAYS	17 DAYS
FOR 3 DAY CATCH-UP	30 DAYS	22 DAYS
FOR 5 DAY CATCH-UP	30 DAYS	30 DAYS
TYPICAL LENGTH OF LAUNCH WINDOWS		
FOR 1 DAY CATCH-UP	12 MIN.	8 MIN.
FOR 2 DAY CATCH-UP	17 MIN.	9 MIN.
FOR 3 DAY CATCH-UP	21 MIN.	11 MIN.
FOR 5 DAY CATCH-UP	36 MIN.	13.5 MIN.
MAXIMUM WINDOW LENGTH		
FOR 1 DAY CATCH-UP	17 MIN.	13.5 MIN.
FOR 2 DAY CATCH-UP	36 MIN.	13.5 MIN.
FOR 3 DAY CATCH-UP	36 MIN.	13.5 MIN.
FOR 5 DAY CATCH-UP	36 MIN.	13.5 MIN.

* BEST TARGET PLANE INCLINATION FOR MAXIMUM WINDOWS.

****** FOR 106[°] LAUNCH AZIMUTH - ASSUMING RANGE AND PILOT SAFETY RESTRICTIONS ON LAUNCH AZIMUTH.

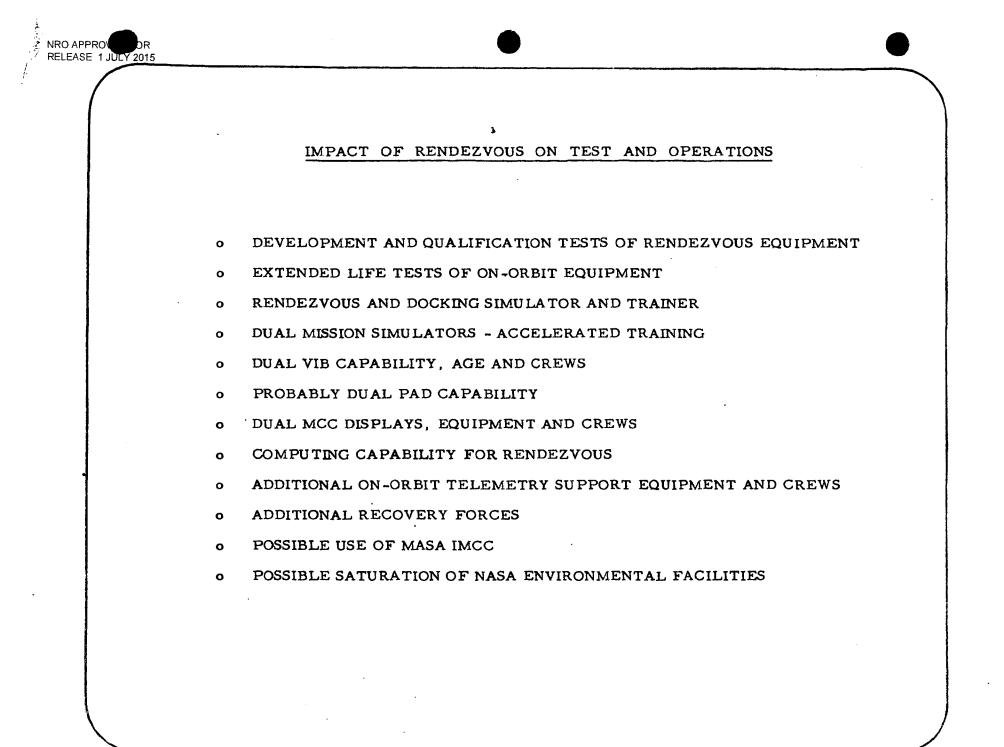
< <u>\</u>


.....

•

GROUND SUPPORT

۰.


- PROVIDE TIME AND AZIMUTH OF LAUNCH
- PROVIDE CHASER REQUIRED INSERTION CONDITIONS
- DETERMINE IF DIRECT ASCENT IS POSSIBLE
- PROVIDE DATA FOR PLANE CHANGES
 - / TIME OF THRUSTING
 - / ATTITUDE FOR THRUSTING
 - / **AV REQUIRED**
- PROVIDE DATA FOR ALTITUDE ADJUSTMENTS
- DETERMINE CATCH-UP POINT AND PROVIDE PHASE ADJUSTMENT DATA TO CHASER
- PERFORM CLOSURE CALCULATIONS SIMILAR TO AIRBORNE COMPUTER AND PROVIDE CHECKPOINTS TO PILOTS

ALAN'S CAL

7		CONCLUSIONS	
	Ō	RENDEZVOUS FEASIBLE WITH REASONABLE TOTAL ΔV (600 - 800 FPS) / TOTAL $\Delta V = \Delta V_1$ (FOR PLANE CHANGE) + ΔV_2 (CLOSURE MANEUVERS)	
	o	VARIABLE LAUNCH AZIMUTH DEEMED NECESSARY	
	o	TIME TO CATCH-UP CAN BE LONG (UP TO 5 DAYS)	
	o	ON-TIME LAUNCHES IMPORTANT (WITHIN A FEW MINUTES)	
	o	EITHER TARGET OR CHASER WILL BE LAUNCHED AT NIGHT IN MAJORITY OF CASES	
	o	GROUND SUPPORT REQUIREMENTS MAJOR	
	0	NEED CAPABILITY OF MODIFYING ROLL PROGRAM FEW MINUTES BEFORE LAUNCH	
			1

ROTEDOR 1 JULY 2015	·	
/		3
		RECOMMENDATIONS FOR FURTHER STUDY
	o	REVIEW CLOSURE TECHNIQUE AND DETERMINE AV REQUIREMENTS FOR THIS PHASE
	o	STUDY ON-TIME LAUNCH CAPABILITY OF TITAN IIIC
	o	REVIEW AND ESTABLISH ACCURATELY THE LAUNCH AZIMUTH RANGE AND PILOT SAFETY RESTRICTIONS
	o	ASSESS IMPACT OF LONG CATCH-UP TIMES
	o	ASSESS IMPACT OF NIGHT LAUNCHES
	o	DETERMINE REQUIRED TRACKING STATIONS LOCATIONS
	o	INVESTIGATE COSTS AND DIFFICULTIES OF IMPLEMENTING VARIABLE ROLL PROGRAM ON TITAN IIIC
	0	DETERMINE ACCURATELY LAUNCH WINDOWS FOR VARIOUS LAUNCH DAYS

.

NRO APPROVER DR RELEASE 1 JULY 2015

AN EXPERIMENT ALLOCATION

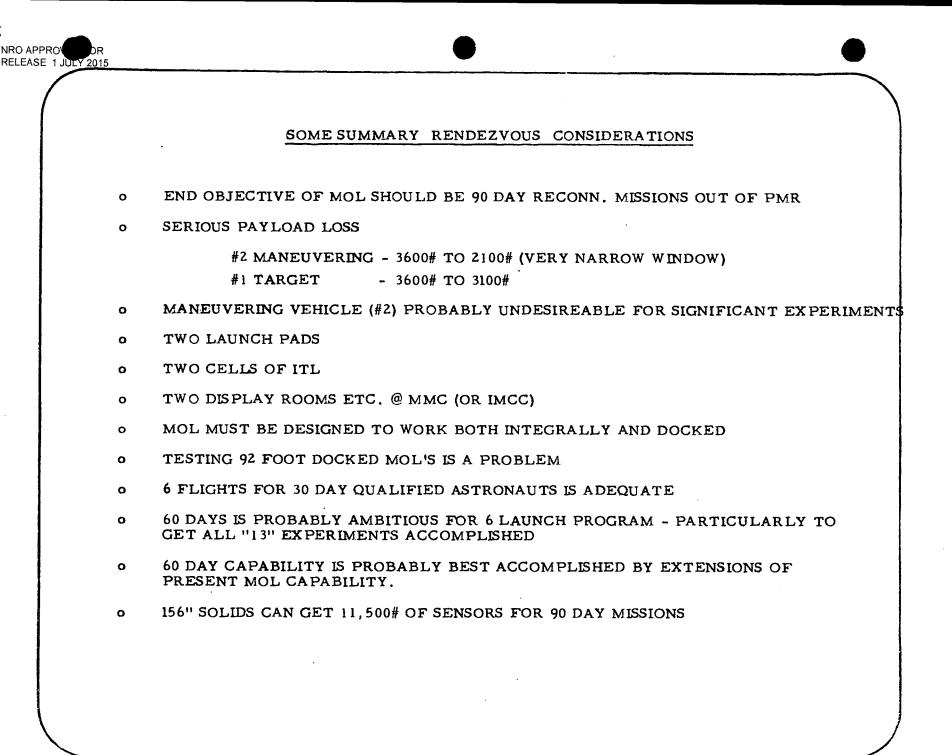
147. S. S. A. A.

1) 2

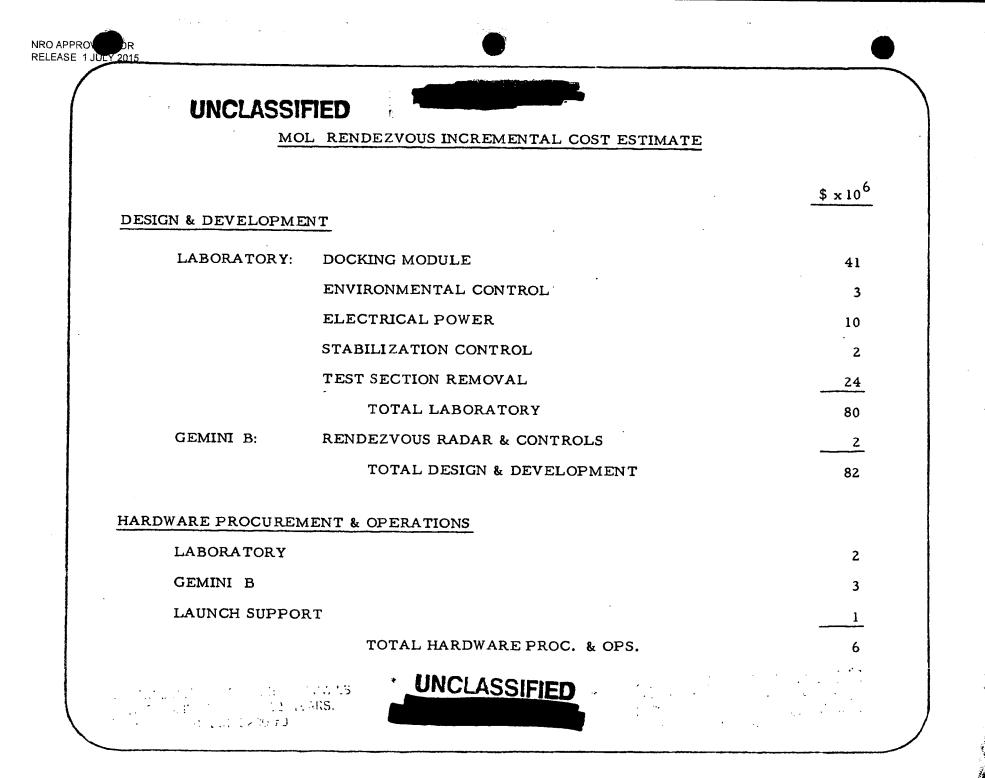
à

1. N. 1.

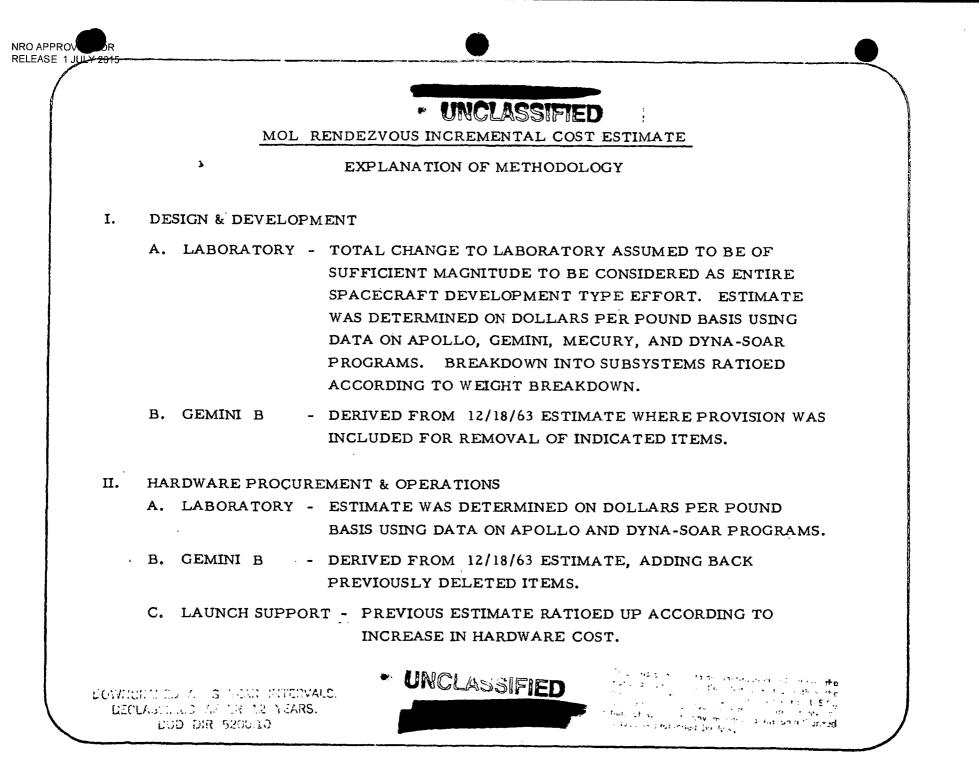
1


ALLERGING CONTRACTOR OF STATES STATES

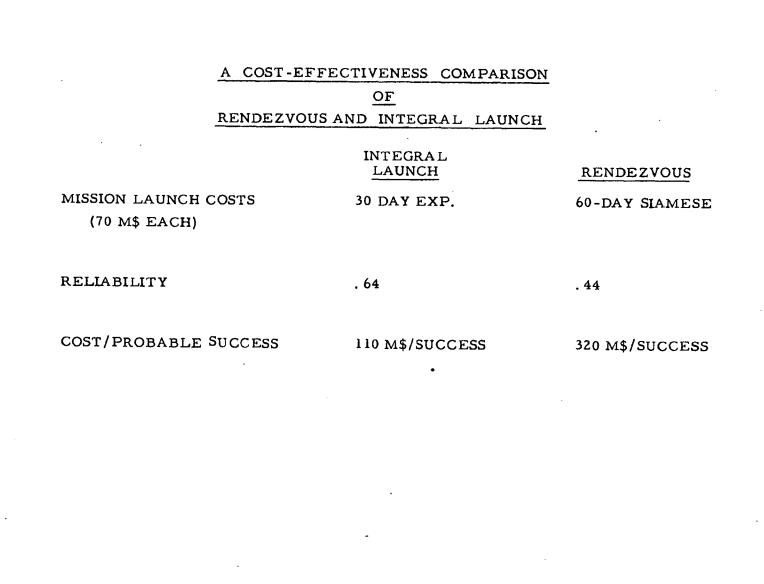
and the second second


3

EXPERIMENTS				FLIGH	<u>r nos</u> .					
NOS.	j	2	3	4	R ⁵	6	R ⁷	8		
P - 1, 2, 3			402	402	402	402	402	402		
P-4						660		660		
P - 5			250	200	150	120	150	120		
P-6			670		670		670			
P - 7			605	605	,					
P - 8					340		340			
P - 10				385		385		385		
P - 11			35	35	35	35	35	35		
P - 12			400	400	3`00	400	300	400	•	
P - 13				•		698				
GPE			505	505	505	505	505	505		
ACTUAL	ed ernerensidet et		2867	2532	2402	3205	2402	3205	<u>Marana - 2009 - 110 - 118</u>	
AVAILABLE			3500	3200	2400	3200	2400	3500		
AVAILABLE SECONDARY			633	660	0	0	0	295		


TOTAL SECONDARY ALLOCATION = 1596

NRO APPRO



	UNCLASS	\$ x 10
PROGRAM SU	IPPORT	•
FLIGH	IT HARDWARE SPARES	1
AGE:	DUPLICATE SET T III - C	70
	DUPLICATE SET GEMINI	14
	DUPLICATE SET LABORATO	RY 24
	PECULIAR TO RENDEZVOUS	6
	AUTOMATION	60
	TOTAL AGE	174
AGE S	PARES	23
TRAIN	IERS	2
EXTE	NDED RECOVERY	<u>`</u> 1
MISSIC	ON CONTROL: IMCC	10
	NETWORK SUPPORT	20
DOCUI	MENTATION	10
	TOTAL SUPPORT	241
TOTAL PROG	RAM	329

·		MOL REI	IDEZVOUS IN UNCLASSIFIED	STIMATE
ш.	PR	OGRAM SUPPORT		
	А.	FLIGHT HARDWARE	SPARES - 20% FACTOR BASED O AND SPACE SYSTEM EXPERIENC	
	в.	AGE -	DUPLICATE T III-C, GÉMINI AND EQUIPMENT + EXTRA FOR REN + ADDITIONAL FOR AUTOMATIC	DEZVOUS
	с.	AGE SPARES -	20% FACTOR AS STATED FOR FL	IGHT HARDWARE.
	D.	TRAINERS -	BASED ON RATIO OF GEMINI MIS TO PRODUCTION VEHICLE COST	
	E.	EXTENDED RECOVE	TO INCREASE IN NUMBER OF DA	
	.	MISSION CONTROL	- 1/2 OF HOUSTON MC TRACKING STATION.	C PLUS I ADDITIONAL
	G.	DOCUMENTAION -	3% OF ALL OTHER ELEMENTS O INCREMENTAL COST BASED ON	
	•			
. •			· · ·	·
L	•	en en de la constala. Nota de la constalas.		The second s The second s

 \hat{c}_{i}^{r}

ъ

IMPROVING LAUNCH VEHICLE CAPABILITY

HOW MUCH WOULD IT BE WORTH TO IMPROVE TITAN III

EXP. PAYLOAD (AMR)

Т-ШС	3,500 #	70 M\$/LAUNCH	
6 SEG.	8,500 #	71 M\$/LAUNCH	(ESTIMATE)
7 SEG.	11,000 #	72 M\$/LAUNCH	(ESTIMATE)
156"	19,000 #	75 M\$/LAUNCH	(ESTIMATE)

THEREFORE,

T-IIIC	\$20,000/#
6 SEG.	\$ 8,300/#
7 SEG.	\$ 6,600/#
156''	\$ 4,000/#

PRESENT PRIMARY EXPERIMENTS ~ 20,000# INCLUDING DUPLICATION

	RECOILES	б	LAUNCHES	@	70	=	420 M\$
6 SEG.	REQUIRES	3	LAUNCHES	@	71	=	213 M\$
7 SEG.	REQUIRES	2	LAUNCHES	@	72	=	144 M\$
156''	REQUIRES	2	LAUNCHES	@	75	=	150 M\$
6	5 SEG. 7 SEG.	5 SEG. REQUIRES 7 SEG. REQUIRES	5 SEG. REQUIRES 3 7 SEG. REQUIRES 2	5 SEG. REQUIRES 3 LAUNCHES 7 SEG. REQUIRES 2 LAUNCHES	5 SEG. REQUIRES 3 LAUNCHES @ 7 SEG. REQUIRES 2 LAUNCHES @	5 SEG. REQUIRES 3 LAUNCHES @ 71 7 SEG. REQUIRES 2 LAUNCHES @ 72	F-IIICREQUIRES6LAUNCHES@70=6 SEG.REQUIRES3LAUNCHES@71=7 SEG.REQUIRES2LAUNCHES@72=156"REQUIRES2LAUNCHES@75=

RO APPROVEDOR ELEASE 1 JULY 2015			
ډ			
<u>IN</u>	APROVING L	AUNC	CH VEHICLE CAPABILITY
THEREFOR	E, FOR THE I	MOL	PRIMARY EXPERIMENTS ONE COULD
IN THEORY	AFFORD TO	PAY:	
	200	М\$	TO DEVELOP 6 SEGMENT TITAN III
	275	м\$	TO DEVELOP 7 SEGMENT TITAN III
	270 TO 325	М\$	TO DEVELOP 156 INCH TITAN III
			· · · · · · · · · · · · · · · · · · ·
		•	

CONCLUSIONS ON MOL RENDEZVOUS

- THE RELIABILITY OF THE PRESENT "COMPLETE" MOL MISSION IS PROBABLY NOT MUCH GREATER THAN 0.65. (THIS GIVES ~ .85 FOR 3 OR MORE SUCCESSES IN THE 6 LAUNCH PROGRAM
- THE RELIABILITY OF A RENDEZVOUS MISSION IS PROBABLY ~ 0.45 . (THIS GIVES $\sim .85$ FOR ONE OR MORE SUCCESSES IN A $3 \times 2 = 6$ LAUNCH PROGRAM)
- REASONABLE MODIFICATIONS APPEAR TO BE POSSIBLE TO EXTEND THE PRESENT MOL INTEGRAL LAUNCH TO 60 DAYS
- THE IMPACT ON EXPERIMENT ALLOCATION AND RELIABLE EXPERIMENT ACCOMPLISHMENT IS VERY SERIOUS
- THE PAYLOAD LOSS IS 500 TO 2500 POUNDS

.

NRO APPRO DR RELEASE 1. Do Y 2015

- THE IMPACT ON THE GROUND FROM ALMOST ALL ASPECTS OF OPERATION IS SERIOUS
- INTERJECTING 2 NEW CONFIGURATIONS INTO A 6-LAUNCH PROGRAM IS EXTREMELY AMBITIOUS
- THE FINAL OPERATIONAL MISSION CONFIGURATION IS NOT YET FIRM ENOUGH TO DO EXTENSIVE MISSION PLANNING
- NO DOLLAR ESTIMATE HAS YET BEEN MADE OF THE IMPACT OF RENDEZVOUS ON THE PROGRAM
- IT IS ESSENTIALLY IMPOSSIBLE TO GET ENOUGH RENDEZVOUS LAUNCHES IN SUCH A FEW LAUNCHES TO BE TRULY MEANINGFUL
- MOL WOULD CONTRIBUTE QUITE SUCCESSFULLY IF 3-4, -5 or 6 CREWS WERE FULLY QUALIFIED FOR 30-DAY MISSIONS

SOME OTHER NATIONAL SPACE PROGRAMS

FAILURES	SUCCESSES
DYNASOAR	X-15
SAINT	MERCURY
RANGER	TELSTAR
MIDAS	TRANSIT
VANGUARD	TIROS
	SYNCOM

VOSTOK

٤

1

SURVEYOR	?
GEMINI	?
APOLLO	?

LESSON: AVOID OVER - AMBITIOUS PROJECTS???

	RECOMMENDATIONS AND ACTION ITEMS
0	ELIMINATE REND. FROM PRESENT 6 FLIGHT PROGRAM
	/ SPEC.
	/ PROGRAM TEST PLAN
	/ ETC.
o	INSIST THAT INDUSTRY SHOW THEIR DESIGN APPROACH FOR FOLLOW-ON REND. FLIGHTS.
	/ SPEC. ADDENDUM?
o	INSIST THAT INDUSTRY SHOW THEIR DESIGN TO REACH 60 DAYS BY EITHER INTEGRAL OR REND. LAUNCH.
0	STUDY VIGOROUSLY THE RECONN. MISSION FOR APPLICABILITY OF "PRESENT" HARDWARE. LAY REQUIREMENTS ON MOL WHEN "FIRM".
o	STUDY FLY-BY MISSION FOR APPLICABILITY OF "PRESENT" MOL HARDWARE.
0	CONTINUE TO STUDY ALL FOLLOW-ON MOL MISSIONS.
	/ NASA REQUIREMENTS
	/ RECONN. REQUIREMENTS
	/ FLY-BY REQUIREMENTS
	/ OTHER REQUIREMENTS

NRO APPROVED FUR

· ----. .

۹.

UNCLASSIFIED

UNCLASSIFIED

ū

ATION LIBRARY REALENCE CORPORA

يا. مۇند

.

25 • 1. 2

14 ٠,