Subject: Neutral Buoyancy Integrated Test Requirements

From: S. M. Tennant

Reference: Letter to S. Tennant from F. H. Dietrich dated 28 June 1968 Subject: Same as above
In accordance with your request, the requirements for underwater testing have been reviewed. It is our conclusion that there should be an underwater testing program in order to insure the adequacy of the design and verification of time lines and procedures. We conclude that only a minimum effort should be funded and that effort should be concentrated in those areas where downstream retrofit, either design or procedural, would have a significant cost and schedule impact. The details of this analysis are included in the enclosed package.

In line with this conclusion, the areas where integrated neutral buoyancy testing should prove effective are:

1. Locate the attach points for the lower leg restraints and temporary holding fixtures.
2. Assure that the equipment located in the lower portion of Bay 1 can be operated and maintained in conjunction with equipments stowed in the lower portion of Bay 5 .
3. Verify the compatibility of the four components of the intcgrated restraint system with mission tasks at Bays 1, 2, and 8 .
4. Determine the adequacy of DRC, both primary and secondary, stowage mechanisms, locations, and procedures.

Relative to the selection of an integrating contractor, it appears that DAC has, more involvement in the required testing; however, either GE or DAC have adequate technical competence to do the work. It is recommended that which.. ever contractor is chosen, we place at least equal emphasis on the design development testing as on procedures development and verification, and that furthermore, this design development testing must proceed essentially in the next six months.

SMT:ov


[^0]Wacie ra meman

UNDERWATER WEIGHTLESSNESS SIMULATION COMMENTS
NASA EXPERIENCE PROVES RESULTS
CAN BE MISLEADING (TIME \& EFFORT). CAN BE DANGEROUS WITH LARGE MASSES. NASA EXPERIENCE PROVES RESULTS
RELEVANT AND VALID.

PRESENT COVERAGE
/ NO INTEGRATED CREW INTERFACE TESTING PROGRAMMED
/ INDEPENDENT 1-G SIMULATIONS - ALL CONTRACTORS
。
/ INDEPENDENT 0-G AIRCRAFT SIMULATIONS - LV CONTRACTOR
-
HANDLE VIA BYEMAN
CONTROL SYSTEM ONLY

NRO APPROVED FOR
RELEASE 1 HtY 2015




89-0200G-LOT \#IG
Page 8
UNDERWATER WEIGHTLESSNESS SIMULATION
ESSENTIAL TESTING REQUIREMENTS
ATTACH POINTS FOR LOWER LEG RESTRAINTS AND TEMPORARY
HOLDING FIXTURES
COMPATIBILITY OF EQUIPMENT IN BAY 1 WITH STOWAGE IN BAY 5
COMPATIBILITY OF INTEGRATED CREW RESTRAINTS WITH BAYS 1 ,
2 AND 8 OPERATIONS
DRC STOWAGE MECHANISMS, LOCATIONS AND PROCEDURES
COMPATIBILITY OF INTEGRATED CREW RESTRAINTS WITH BAYS 1 ,
2 AND 8 OPERATIONS
DRC STOWAGE MECHANISMS, LOCATIONS AND PROCEDURES
SHETDORIAN
DRC STOWAGE MECHANISMS, LOCATIONS AND PROCEDURES
MOCK-UP FIDELITY
MINIMUM TO ACCOMPLISH ESSENTIAL TESTING
NOTE: WOULD REQUIRE UPRATING MOCK-UP FOR TRAINING
HANDLE VIA BYEMAN
CONTROL SYSTEM ONLY

INCLUDE UNDERWATER WEIGHTLESSNESS FACILITY IN TRAINING
PLANING PLANING

HANDLE VIA BYEMAN
CONTROL SYSTEM ONLY



[^0]:    cc: D. R. Howard
    W. C. Williams

