To: C. C. Ponies
cc: G. D. Mc Ghee
Date: 7 October 1968
L. E. Watson

This describes the problem I outlined to you in a little more detail.

1. From Toller-Gray program obtain

$$
\begin{aligned}
& T_{3}(\Sigma, \nu)_{\&} T_{T}(\Sigma, \nu)_{\text {for }} \quad 0 \leqslant \nu \leqslant 200 \mathrm{l} / \mathrm{m} \cdot \mathrm{~m} . \\
& \text { and }-15^{\circ} \leqslant \Sigma \leqslant+30^{\circ} ; 5^{\circ} \text {. } \\
& \text { on cards. }
\end{aligned}
$$

2. Make a least squares fit of a polynomial to these, such that $\left|T_{T S}-T_{L s}\right|$
3. Using George Judd's program: $\leqslant 0.005$

For an assigned $\Sigma \notin \Omega$ compute

$$
\begin{aligned}
\Delta x(x, y, \Sigma, \Omega) & =x_{s}+\frac{2}{\pi} a \\
\text { and } \quad \Delta y(x, y, \Sigma, \Omega) & =y_{s}+\frac{2}{\pi} a
\end{aligned}
$$

4. Compute

$$
T_{x M}(R, \nu)=\frac{\sin \left[25.4 \pi \nu\left[x_{s}(x, y)+\frac{2}{\pi} a\right]\right.}{25.4 \pi \tau\left[x_{s}(x, y)+\frac{2}{\pi} a\right]}
$$

and $\begin{aligned} & \quad T_{y M}(R, z)=\frac{\sin \left\{25.4 \pi \nu\left[y_{s}(x, y)+\frac{2}{\pi} a\right]\right.}{25.4 \pi \nu\left[y_{s}(x, y)+\frac{2}{\pi} a\right]} \\ & \text { where } \quad x=R \cos \theta\end{aligned}$
and $y=R \operatorname{Ain} \theta$
5. For $\sum \frac{1}{\xi} \Omega$ fixed average the eight values of $T_{K M}$ obtained by
 Do the same to obtain $\overline{T_{y M}}(\Sigma, \Omega, R, z)$
6. Compute

$$
\begin{aligned}
& \overline{T_{x}}
\end{aligned}=\sqrt{T_{S}(\Sigma, \nu) \bar{T}_{x M}(\Sigma, \Omega, R, \gamma)}
$$

7. Average $\overline{T_{k}}(\Sigma, \Omega, R, \nu)$ over all Σ and Ω for $0 \leqslant \Omega \leqslant 40^{\circ} ; 10^{\circ}$. This will give $\overline{T_{x}}(R, \gamma)$ Do the same to obtain $\overline{\overline{T_{y}}}(R, \gamma)$
8. Form $\bar{\equiv}(R, \nu)=\sqrt{\overline{T_{x}}(R, \nu) * T_{y}(R, \nu)}$
9. Solve simultaneously with AIM ($\boldsymbol{\mu}$) to obtain $P_{i}(\mathbb{R})$
10. Assign $a=50 \times 10^{-6}$ to give $P_{1}(R)$

Assign $a=125 \times 10^{-6}$ to give $P_{2}(R)$
11. Compute $\mathrm{R}^{*}(\mathrm{R})=\frac{\mathrm{P}_{2}(\mathrm{R})}{\mathrm{P}_{1}(\mathrm{R})}$

