

| 2010 |   |                                                                                                                                                                                                       |
|------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |   | -SECRET / DORIAN                                                                                                                                                                                      |
|      |   | BIF-107-25023-68<br>PAGE 2                                                                                                                                                                            |
|      |   | MOL MANNED TRACKING DATA SOURCES                                                                                                                                                                      |
|      | ο | TRACKING STUDY LITERATURE                                                                                                                                                                             |
|      | o | MAN-MODEL EQUATIONS                                                                                                                                                                                   |
|      | ο | EXISTING SIMULATOR STUDIES                                                                                                                                                                            |
|      | 0 | (E. G., LMSC)<br>GE INTERIM SIMULATION - 1966                                                                                                                                                         |
|      |   | / CRUDE PART TASK SIMULATORS, MOSTLY INCONCLUSIVE RESULTS<br>DUE TO FLUID STATE OF BASELINE AND SIMULATION LIMITATIONS.                                                                               |
|      | 0 | ENGINEERING DEVELOPMENT SIMULATOR (EDS) - 1968<br>/ COMPLETED SEVERAL SUCCESSFUL PART TASK SIMULATIONS,<br>CONTROL/DISPLAY CONFIGURATION STUDIES, ETC. USING HYBRID<br>COMPUTATION, STIMULUS MATERIAL |
|      | ο | MISSION DEVELOPMENT SIMULATOR (MDS) - 1969<br>/ COMPLETE PAYLOAD SIMULATION                                                                                                                           |
|      | o | MISSION MODULE SIMULATION EQUIPMENT/LAB MODULE SIMULATION<br>EQUIPMENT (MMSE/LMSE)                                                                                                                    |
|      |   | / INTEGRATED PAYLOAD/VEHICLE SIMULATION, TRAINER                                                                                                                                                      |
|      | 0 | AEROSPACE POINTING AND TRACKING SIMULATOR - 1967-<br>/ SUPPORT MANNED MOL POINTING AND TRACKING EFFORTS                                                                                               |
|      |   | SECRET / DORIAN                                                                                                                                                                                       |

|   | SECRET / DORIAN                                                   |
|---|-------------------------------------------------------------------|
|   | BIF-107-25023-68<br>PAGE 3                                        |
|   | PURPOSES OF AEROSPACE SIMULATOR                                   |
| о | SERVE AS AN AID TO CONTRACTOR TD                                  |
|   | / ''CALIBRATE TECHNICAL INTUITION''                               |
|   | / ANTICIPATE OPERATIONAL AND SIMULATOR DESIGN PROBLEMS            |
|   | / VERIFY CONTRACTOR CONCLUSIONS AND SIMULATION RESULTS            |
| о | PERFORM PRELIMINARY NON-BASELINE AND LOW PRIORITY MISSION STUDIES |
|   | / PLANETARY TRACKING STUDY                                        |
|   |                                                                   |
| о | COMPLEMENT/SUPPLEMENT CONTRACTOR STUDIES                          |
|   | / STICK TRANSFER FUNCTION STUDY                                   |
| 0 | DEMONSTRATION TOOL FOR AIR FORCE, PROGRAM OFFICE AND CONTRACTORS  |
|   |                                                                   |
|   | -SECRET / DORIAN                                                  |

|   | BIF-107-25023-68<br>PAGE 4                                                        |
|---|-----------------------------------------------------------------------------------|
|   | CAPABILITIES                                                                      |
| o | PERSONNEL                                                                         |
|   | / ELECTROMECHANICAL DEPARTMENT (SYSTEMS INTEGRATION SECTION, G&C LAB)             |
|   | / MOL BIOASTRONAUTICS                                                             |
|   | / HYBRID COMPUTATION CENTER                                                       |
|   | / MOL FLIGHT CREW (SUBJECTS, CONSULTANTS)                                         |
|   | / CONTROL SYSTEMS DEPARTMENT (CONSULTANTS)                                        |
| o | EQUIPMENT                                                                         |
|   | / ANALOG COMPUTER (INITIALLY EAI 24D, NOW AD4)                                    |
|   | / CONTROL STICK (FROM GE)                                                         |
|   | / CRT WITH OPTICS AND RETICLES                                                    |
|   | / MAGNIFICATION CONTROLLERS (BUILT BY G&C LAB)                                    |
|   | <pre>/ AUXILIARY SIMULATION EQUIPMENT (NOISE GENERATOR,<br/>RECORDER, ETC.)</pre> |
|   | / DATA REDUCTION - PROGRAMMA 101, MCC OPEN SHOP, AND ASCOL                        |
|   | / HYBRID EXPANSION CAPABILITY                                                     |
|   |                                                                                   |
|   |                                                                                   |
|   |                                                                                   |

.

BIF-107-25023-68 PAGE 5

# ADVANTAGES RELATIVE TO CONTRACTOR FACILITIES

# • CONVENIENCE

- / PROXIMITY TO AEROSPACE
- / AVAILABILITY OF FLIGHT CREW
- / TWO-THREE MAN OPERATION, INCLUDING SUBJECT

# o AVAILABILITY

/ MINIMAL SCHEDULING CONSTRAINTS AND "DOWN TIME"

# • FLEXIBILITY

- / MINIMUM NUMBER OF ELECTROMECHANICAL PARTS
- / FAST TURNAROUND TIME
- ANALOG COMPUTER PROGRAM EASILY CHANGED
- / HYBRID CAPABILITY AVAILABLE
- o FIDELITY
  - / TARGET POSITION AND RATE BEHAVIOR HIGHLY REALISTIC
  - / MINIMAL SIMULATOR PECULIAR ERROR
- o COST
  - / NO CAPITAL EXPENDITURE
  - / MINIMAL OPERATING COST

|   |           |                                                                                                                             | BIF-I<br>PAGE | 07 <b>-</b> 250<br>6 | 23-68 |
|---|-----------|-----------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|-------|
|   |           | SIMULATION TASKS                                                                                                            |               |                      |       |
|   |           |                                                                                                                             | EMD           | PO                   | CREW  |
| 0 | PROBL     | EM FORMULATION                                                                                                              | x             | х                    | x     |
| 0 | MODEL     | JING                                                                                                                        | x             |                      |       |
|   | <br> <br> | TOTAL TASK DEFINITION<br>ERROR SOURCE IDENTIFICATION AND SCALING<br>REQUIRED SIMULATION HARDWARE IDENTIFIED<br>AND OBTAINED |               |                      |       |
| 0 | INITIAI   | PARAMETER MINIMIZATION                                                                                                      | x             |                      |       |
|   | / .<br>/  | INITIAL SIMULATION SETUP, CHECKOUT,<br>AND OPTIMIZATION<br>EVALUATION OF BASIC CONCEPTS AND<br>REASONABLE PARAMETER RANGES  |               |                      |       |
| 0 | PILOT     | STUDIES                                                                                                                     | x             | Х                    | х     |
|   | 1         | TWO CREWMEN, EXTENSIVELY TRAINED,<br>AS SUBJECTS                                                                            |               |                      |       |
|   | /         | FURTHER PARAMETER AND CONCEPT<br>MINIMIZATION                                                                               |               |                      |       |
|   | /         | FINALIZE EXPERIMENT PARAMETER & PROCEDURES                                                                                  |               |                      |       |
| 0 | FORMA     | AL STUDIES                                                                                                                  | х             | х                    | х     |
|   | /         | SIX CREWMEN, FORMAL PRACTICE AND DATA RUNS                                                                                  |               |                      |       |
| 0 | DEMON     | STRATION TO OTHERS AS APPROPRIATE                                                                                           | х             |                      |       |
|   |           |                                                                                                                             |               |                      |       |



BIF-107-25023-68 PAGE 8

្តា

# PROBLEM STATEMENT

- DESIRE TO IMPROVE ON EARTH-BASED PLANETARY PHOTOGRAPHY (~1 SEC RESOLUTION) USING MOL SYSTEM
- FEASIBILITY STUDY NECESSARY TO DETERMINE WHETHER MOL CREWMEN CAN TRACK PLANETS ACCURATELY ENOUGH TO OBTAIN BETTER RESOLUTION

### PERTINENT PLANET CHARACTERISTICS

| PLANET  | APPARENT EQUATORIAL<br>ANGULAR DIAMETER (SEC) | EXPOSURE<br>TIME (SEC) | APPARENT DIAMETER<br>AT 1000X (DEGREES) |   |
|---------|-----------------------------------------------|------------------------|-----------------------------------------|---|
| MERCURY | 5-13 (7.2)                                    | 0.0034                 | 2.0                                     |   |
| VENUS   | 10-64 (24)                                    | 0.00116                | 6.7                                     |   |
| EARTH   | aa •                                          | 0.004                  | • • • •                                 |   |
| MARS    | 3.5-25                                        | 0.0209                 | 7.0                                     |   |
| JUPITER | 31-50                                         | 0.089                  | 14                                      |   |
| SATURN  | 15-20                                         | 0.295                  | 5.7                                     |   |
| URANUS  | 3.4-4.2                                       | 1.176                  | 1.2                                     |   |
| NEPTUNE | 2.2-2.4                                       | 2.28                   | 0.67                                    | • |
| PLUTO   | 0.4-0.6                                       | 13.3                   | 0.17                                    | - |

#### PROCEDURES

- EACH CREW MEMBER TRACKED AND "PHOTOGRAPHED" EACH PLANET 15 TIMES AT 1000 POWER
- PEAK-TO-PEAK VARIATIONS IN TARGET POSITION DURING EXPOSURE TIME WERE OBTAINED FROM RECORDED DATA
- MAN'S PERFORMANCE WAS COMBINED WITH THE PERFORMANCE OF OTHER COMPONENTS (OPTICS, FILM, ETC.) TO OBTAIN OVERALL SYSTEM PERFORMANCE





BIF-107-25023-68 PAGE 10

# IN PLACE OF THIS PAGE, AN UNCLASSIFIED

DIAGRAM OF THE HYBRID COMPUTATION

CENTER WILL BE SHOWN.

NRO APPROVED FOR RELEASE 1 JULY 2015

# SECRET / DORIAN

THE CONTRACTOR FOR THE PROPERTY OF T

BIF-107-25023-68 PAGE 11

# SYSTEM RESOLUTION - COMPARISON WITH GROUND-BASED CAPABILITY

|                                            |         | MOL     |                                           | GROUND-BASED |
|--------------------------------------------|---------|---------|-------------------------------------------|--------------|
| PLANET                                     | PHOTO   | ANGULAR | SURFACE                                   | SURFACE      |
| ¥ina an a | RES.    | RES.    | RES.                                      | RES.         |
|                                            | (LP/MM) | (SEC)   | (MI)                                      | (MI)         |
| MERCURY                                    | 120     | 0.13    | 52                                        | 400 *        |
| VENUS                                      | 120     | 0.13    | 39                                        | 300          |
| MARS                                       | 106     | 0.15    | 35                                        | 230          |
| JUPITER                                    | 64      | 0, 25   | 440 🕐                                     | 1800         |
| SATURN                                     | 59      | 0.27    | 980                                       | 3600         |
| URANUS                                     | 56      | 0.28    | 2200                                      | 7800         |
| NEPTUNE                                    | 54      | 0.29    | 3400                                      | 12000        |
| PLUTO                                      | 32      | 0.50    | 8200                                      | * * -        |
| *                                          |         |         | 1. A. |              |

#### CONCLUSION

# PLANETARY PHOTOGRAPHY FROM THE MOL VEHICLE CAN SIGNIFICANTLY IMPROVE KNOWLEDGE OF SURFACE FEATURES OF THE PLANETS

and the second second

NEAR PLANETS NOW INCLUDED AS POTENTIAL STR TARGETS

<del>SEGRET</del> / DORIAN



BIF-107-25023-68 PAGE 13

#### BACKGROUND

- DEFINITION OF BASELINE STF (LINE OF SIGHT ANGLE/STICK DEFLECTION) REQUIRED FOR SOFTWARE DEVELOPMENT AND OTHER MISSION EXPERIMENTS.
- ORIGINAL GE BASELINE STF BELIEVED UNACCEPTABLE FOR HIGH PRECISION, TIME CRITICAL TASK (RATE PLUS ACCELERATION
   DERIVED FROM MAN MODEL).
- ORIGINAL EDS FIDELITY INSUFFICIENT TO PERFORM THIS EXPERIMENT IN A TIMELY MANNER.
- AEROSPACE AGREED (FALL 1967) TO DEFINE AND OPTIMIZE A PRELIMINARY STF FOR MO AND ATS IN A REALISTIC TIMELINE ENVIRONMENT.
- FOLLOWING AEROSPACE STUDIES, GE AGREED TO VALIDATE RESULTS ON A MODIFIED EDS WHICH WOULD INCORPORATE REALISTIC SCENE AND DIGITAL ENVIRONMENT.

BIF-107-25023-68 PAGE 14

### EXPERIMENT DESIGN

• CONTROLS

- / 30 DEGREES HALF-ANGLE-CONE STICK MODIFIED BY G&C LAB
- / FOUR POSITION MAGNIFICATION CONTROL | BUILT BY G&C LAB
- / DUAL RANGE ATS ZOOM CONTROLLER BUILT BY G&C LAB

# o DISPLAY

/ CRT - SQUARE TARGET WITH SIZE PROPORTIONALTO MAGNIFICATION

### o TASK

- / MO RATE NULL DURING TIMED TARGET RUN
- ATS CENTER AND RATE NULL

### • ERROR SOURCES

- / ALTITUDE AND MIRROR RATE MEASUREMENT ERROR ( $\cos^2 \Sigma$  EFFECT IN RATE) MO AND ATS
- / SERVO RATE BIAS (CONSTANT RATE) MO AND ATS
- / BEARING NOISE (LOW FREQUENCY RANDOM RATE) MO AND ATS
- / INITIAL POSITION ERROR ATS ONLY

### o SCORING

- / MO TIME TO RATE NULL (< 17µr/SEC), STEADY STATE NULLING AVERAGE
- / ATS TIME TO CENTER (<  $\simeq$  200 FT), STEADY STATE NULLING AVERAGE

BIF-107-25023-68 PAGE 15

#### CREATION OF NEW STF TYPE

#### o PROBLEMS

- LOW GAIN RATE-ONLY STF GOOD FOR STEADY STATE RATE NULLING BUT LACKS AUTHORITY TO CATCH LARGE INITIAL CONDITIONS (RATE BIASES)
- HIGH GAIN RATE ONLY STF IS NOISY AND JUMPY DURING STEADY STATE RATE NULLING
- ADDING ACCELERATION TO LOW GAIN RATE DEGRADES TIME TO RATE NULL AND STEADY STATE PERFORMANCE, AND REQUIRES UNNATURAL STICK MOTION

### o OBJECTIVE

- / CREATE A STICK TRANSFER FUNCTION TYPE WHOSE CHARACTERISTICS WILL CHANGE WITH THE TASK BEING PERFORMED
- / A STF THAT CAN QUICKLY NULL A RATE "BIAS" IS NEEDED I.E., A NON-LINEAR STF

#### o SOLUTION

- ADD HIGH GAIN ACCELERATION TERM TO LOW GAIN RATE TERM WHEN SUBJECT "RUNS OUT OF STICK"
- ACCELERATION TERM IS REMOVED WHEN STICK MOVES OFF END STOP, THUS CREATING A NEW OPERATING RANGE
- $\Delta RATE = ACCELERATION \cdot \Delta t$  WITH  $\Delta t$  UNDER CONTROL OF CREWMAN
- SIMILAR PROBLEM OCCURS WHEN RAPID CENTERING REQUIRED ON ATS WHERE
  A POSITION BIAS IS NEEDED
- SOLUTION IS TO ADD HIGH GAIN RATE TERM TO LOW GAIN RATE TERM FOR EXTREME STICK DEFLECTIONS

 $\Delta POSITION = RATE \cdot \Delta t$ 



0

#### -SECRET / DORIAN

BIF-107-25023-68 PAGE 17

# MO STICK TRANSFER FUNCTION STUDY

o STF FORM TO BE OPTIMIZED - 
$$K_1 + \frac{K_2}{S} + \frac{K_3}{S^2} + \frac{K_4}{S^2} \mu (d - 29^{\circ})$$

INITIAL PARAMETER MINIMIZATION AND PILOT STUDY (TWO CREW)

- K<sub>1</sub> = 0; OTHERWISE VERY JUMPY RESPONSE AND FINGER NOISE
- $K_2 \neq 0$ ; OTHERWISE OSCILLATORY RESPONSE, INSTABILITY
- / EITHER  $K_3$  OR  $K_4 = 0$ ; HAVING BOTH TERMS WORSE THAN EITHER ALONE

GAINS OPTIMIZED FOR REMAINING STF CANDIDATES -

$$\frac{K_2}{S}, \frac{K_2}{S} + \frac{K_3}{S^2}, \frac{K_2}{S} + \frac{K_4}{S^2} \mu (d - 29^{\circ})$$

• FORMAL STUDY CANDIDATES:  $\frac{K_2}{S}$ ,  $\frac{0.5 K_2}{S} + \frac{0.25 K_2}{S^2}$ ,  $\frac{0.5 K_2}{S} + \frac{K_2}{S^2} \mu (d - 29^\circ)$ WHERE VALUE OF  $\overline{K_2}$  DEPENDS ON INITIAL CONDITION ASSUMPTIONS AND DESIRED OPERATING MODE

<del>SECRET</del> / DORIAN

BIF-107-25023-68 PAGE 18

# FORMAL MO STICK TRANSFER FUNCTION

STUDY CONCLUSIONS (SIX CREW)

# • RATE WITH END STOP ACCELERATION STF HAS BEST OVERALL CAPABILITY AND FLEXIBILITY

- / BEST RATE NULLING PERFORMANCE (<5µr/SEC)</pre>
- / TIME TO RATE NULL IS VERY GOOD ( $\simeq$  2 SEC)
- / PREFERRED BY MOST SUBJECTS
- / RANDOM NOISE INTERACTION MINIMIZED
- / HAS BEST TIME VERSUS RATE NULLING PERFORMANCE TRADEOFF FLEXIBILITY
- / MOST EFFECTIVE PERFORMANCE AGAINST WIDE RANGE OF INITIAL CONDITIONS
- RATE ONLY STF CLOSE IN PERFORMANCE BUT SIGNIFICANTLY LESS FLEXIBLE
- RATE PLUS ACCELERATION STF POOREST

<del>SECRET</del> / DORIAN

BIF-107-25023-68 PAGE 19

#### ATS STICK TRANSFER FUNCTION STUDY

- o STF CANDIDATES FOR PILOT STUDY
  - / RATE ONLY GOOD, BUT HAS SIGNIFICANT FINGER NOISE AND SOMEWHAT OVERSENSITIVE
  - / RATE PLUS ACCELERATION POOR
  - / RATE WITH END-STOP ACCELERATION GOOD, BUT NOT OPTIMUM FOR CENTERING
  - / RATE WITH END-STOP RATE BEST OVERALL PERFORMANCE AND FLEXIBILITY
- PILOT STUDY CONCLUSIONS
  - / RATE WITH END-STOP RATE RECOMMENDED AS NEW BASELINE ATS STF

 $\left(\frac{K_2}{S} + \frac{K_5}{S} + (d - 29^{\circ})\right); \quad 2 \le \frac{K_5}{K_2} \le 3$ 

- / FINAL K<sub>2</sub>, K<sub>5</sub> VALUES OR SPECIFIC RATIO NOT RECOMMENDED UNTIL FURTHER OPERATIONAL CONCEPTS DEFINED
  - WHEN WILL CENTERING BE PERFORMED (HOW OFTEN)
  - CENTERING TIME VERSUS ACCURACY TRADEOFF
  - ACTIVITY DETECTION/CENTERING PROCEDURES

### <u>SECRET</u> / DORIAN

BIF-107-25023-68 PAGE 20

# GE VALIDATION STUDIES

o M O

- / VERIFIED ALL ASPECTS OF AEROSPACE STUDY
- / RATE WITH END STOP ACCELERATION STF ADOPTED AS MO BASELINE

### o ATS

- / GE VALIDATED RATE WITH END STOP RATE STF PERFORMANCE IN DIGITAL/STIMULUS ENVIRONMENT
- RATE WITH END STOP RATE STF ADOPTED AS ATS BASELINE

<del>SECRET</del> / DORIAN

BIF-107-25023-68 PAGE 21

# MISCONCEPTIONS RESOLVED USING AEROSPACE SIMULATOR

### MISCONCEPTION

# FACT

- STF GAIN SHOULD BE INVERSELY PROPORTIONAL TO MAGNIFICATION
- STICK OUTPUT COUNTER SHOULD BE AUTOMATICALLY REZEROED AFTER EACH RUN
- LEAD (ACCELERATION) SHOULD BE ADDED TO ANY STF OPTIMIZED ON AN ANALOG SIMULATOR TO COMPENSATE FOR DIGITAL PROCESSING LAGS
- MAN REQUIRES STICK EXTRAPOLATION TO MINIMIZE EFFECTS OF TEN TIMES/SEC SAMPLING
- SIMULATOR LOW RATE PERFORMANCE SHOULD BE SPECIFIED BASED ON MAN'S STATIC VISUAL RESOLUTION THROUGH THE OPTICS

- REAL, NOT APPARENT, RATES DETERMINE TASK; UNDESIRABLE SIDE EFFECTS
- MANUAL REZEROING NATURAL; UNDESIRABLE SIDE EFFECTS
- ADDING LEAD DETRACTS FROM NATURAL STICK/SCENE RELATIONSHIPS
- SAMPLING AT TEN TIMES/SECOND HAS INSIGNIFICANT EFFECT. EXTRAPOLATION TECHNIQUES ARE PREDICTIVE AND TEND TO CREATE UNNATURAL SCENE MOTION
- CREW CAN DETECT MUCH SMALLER MOTIONS (<1 MIN) THAN CALCULATIONS BASED ON STIMULUS AND OPTICAL QUALITY WOULD IMPLY

### <u>SECRET</u> / DORIAN

BIF-107-25023-68 PAGE 22

#### MISCONCEPTIONS RESOLVED USING AEROSPACE SIMULATOR

# (CONTINUED)

### **MISCONCEPTION**

- DIGITAL SCORING IS ADEQUATE FOR EXPERIMENTAL PURPOSES
- MOTOR SKILL EXPERIMENTS SHOULD INCLUDE ALL CREW MEMBERS TO GET MOST RELIABLE DATA
- MAN CAN NULL MOST OF THE BEARING NOISE

 ON LINE ANALOG SCORING IS NEEDED FOR CREW TECHNIQUE OPTIMIZATION, DETECTION OF CREW FATIGUE, CREW MOTIVATION (AND SIMULATOR DEBUGGING)

FACT

- BEST DATA OBTAINED BY USING AVAILABLE TIME TO TRAIN A FEW (2-6) HIGHLY MOTIVATED CREWMEN AS FAR DOWN THE LEARNING CURVE AS POSSIBLE
- MAN CANNOT NULL BEARING NOISE;
  ATTEMPT TO DO SO DEGRADES OVERALL RATE NULLING PERFORMANCE

|   | BIF-107-25023-68                                                                                            |
|---|-------------------------------------------------------------------------------------------------------------|
|   | PAGE 23                                                                                                     |
|   | AEROSPACE SIMULATOR IMPACT                                                                                  |
| o | STF VALIDATION STUDY FORCED FIRST EDS HIGH<br>FIDELITY CALIBRATION                                          |
| о | EDS MODIFICATION BASED ON AEROSPACE SIMULATOR DESIGN                                                        |
| 0 | MDS DYNAMIC FIDELITY REQUIREMENTS BASED ON<br>SIMULATION EXPERIENCE                                         |
| 0 | MDS CALIBRATION AND TEST PROCEDURES BASED<br>ON AEROSPACE SIMULATIONS                                       |
| 0 | SOFTWARE DEVELOPMENT VERSUS HIGH FIDELITY MOTOR<br>SKILL EXPERIMENT BETTER BALANCED IN SIMULATOR<br>DESIGNS |
| ο | CREW PARTICIPATION IN CONTRACTOR EXPERIMENTS<br>ENHANCED BY EXPERIENCE ON ALL ELECTRONIC<br>SIMULATOR       |
| o | AEROSPACE PARTICIPATION IN CONTRACTOR EXPERIMENT<br>PLANNING ENHANCED                                       |
|   |                                                                                                             |
|   |                                                                                                             |
|   | -SEGRET / DORIAN                                                                                            |

