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STATUS OF TASK

This report details the philosophy mathematical exercises required in the
generation of the MSGM. The actual Error Model Program has been written as
of the publishing of this report; however, it has not been completely debugged.

It has been deemed necessary to have realistic data inputs for the program from
actual operational materials; thus, the actual massaging of the program will not
be completed until the first PG Mission has been realized. It is conceivable that
the computer program will receive its final polishing in the actual analysis of the

PG System output.

Furthermore, it is intended to incorporate both the analytical philosophy and
mathematical techniques in the actual data reduction and mapping operations.
This effort is to be carried forth in the continuation of this subtask and in Task 1
Subtask D, and Equipment Procedures for Calibrated Panoramic Data Handling.




Fig. 1-1 — Orbital elements
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INTRODUCTION

The objective of this report is to devise an appropriate error model, whereby
the analysis of a satellite borne camera system might be facilitated.

The camera system consists of three prime sensors, viz., a nominally vertical
frame camera and two inclined panoramic cameras. The latter sweep cross track,
and are configured in such a way that symmetric convergent stereo coverage is
furnished. This coverage is common with a portion of the stereo-overlap that is
obtained with successive overlapping frame exposures.

The selected error model will consider four exposures; two panoramic and two
frame, which are constrained to orbital and auxiliary data. This is sufficiently general
to consider all combinations of frame and panoramic exposures, subject to constraints,
with or without stereo overlap, and may be readily extended to complete blocks and
strips of photographs.

The effects of various errors in the parameters of this four photoblock will be
obtained through an analytical experimental design, that parallels the statistician’s
controlled experiments. For this design exact fictitious data is generated, and the
effects of varying the accuracies of different parameters (individually and in com-
bination) on the end result are obtained by variance-covariance analyses.

It has been suggested that the reduction of the panoramic photography might be
accomplished with greater expediency and precision by using an empirical fitting
process. This suggestion is based on the undefined internal geometry of many
panoramic cameras and the instability of this internal geometry. Without a precise
knowledge of the interior orientation, an analytical solution must fail.

Consequently this report will consist of discussions around the following topics:

Selection of an orbital model
Photogrammetric considerations

A generalized least squares solution

An empirical fitting of the panoramic material
The experimental design
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Although the mathematical development is simple, some rather extensive algebraic
expressions result. Consequently, the step by step descriptions of the fictitious model
data computations, and the specific algebraic expressions for various terms, are
contained as appendices to the main text.
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7 = Epoch, the time at which the body passes through the pericenter
t = the time at which the body is at some point P

Universal gravitational constant

mean motion of body: n = Y, a™3/?

mean anomaly: M = nlt - 7)

eccentric anomaly, defined by M= E - e sinE

celestial longitude of body, angle XZP

8 = celestial latitude of body, angle CSP

emB2 s w
il

1.3 RECTANGULAR COORDINATES XYZ OF BODY

The coordinates of P with respect to the inertial system are given by

X cos & cos 6 cos P
Y{=r|cosB|=r |cos 6 sin & (1)
Z cos ¥ sin 0

where «, B, v, are the direction angles of the vector T. The direction cosines may be
derived from the triangles PNX and PNY (Figure 1-1) as

cos @ = cos § cos (w + f) - sin Q sin (w + f) cos I (2)

cos B = sin Q cos (w + f) + cos  sin (w + f) cos I (3)
and

cosy =sin(w+f) sin 1 (4)

Substituting (2), (3), and (4) into (1), expanding cos (w + f) and sin (w + f), and using
the identities

rcosf=alcosE -e) (5)
and

1/

2
rsinf=all -e?)  sinE ()

reduces (1) to the form

sin E

X| [Ax By [cos (E) - e]

Y| - [ay By
z| |A, B,
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Ax Bx
in which the matrix | Ay By |, is given by
A; B

Ay By cos 2 - cos Isin @ [cosw-sinw:,[l 0 ]
172
Ay Byl=2a |sin@ coslIcosQ 0 (1-ed”

A, B, 0 sin I

(8)

sinw cosw

This may be expanded to yield

Ay = a (cos Q cos w - sin 2 sin w cos I) (9)
Ay = a (sin Q cos w + cos Q sin w cos I) (10)
A; = a (sin I sin w) (11)
By, =-all- e)"? (cos @ sin w + sin © cos w cos I) (12)
By=-a(l - e?)"? (sin @ sin w - cos  cos w cos I) (13)
By =a (1 - e)"? (sin I cos ) (14)

The positional coordinates, given by (7) are in an inertial system, with reference
to which the orbital elements are given. In order that they may be referred to some
other coordinate system, transformations will be necessary.

1.4 COORDINATE SYSTEMS AND TRANSFORMATIONS

For mapping purposes, a system of terrestrial rectangular coordinates, X7 Yo
ZT is convenient, especially for points, such as vehicle positions, which are remote
from the earth’s surface.

This system has its origin at the center of gravity of the earth, or of the reference
spheroid, and is oriented such that the +Zt axis is directed to the mean north pole,*
and the mean meridian of Greenwich?t lies in the Xp ZT plane. This system is
related to the geodetic longitude and latitude, A, ¢’, and the geocentric longitude and
latitude, A, ¢, according to

* As defined by Service International des Latitudes.
TAs‘defined by Bureau International de 1’ Heure.




X (N + H) cos ¢’ cos A CoS ¢ coS A
Y| =] (N+H)cos ¢ sinA [=r|cos ¢ sina (15)

T [(l-gzl)N«»H]sin(p’ sin @

where N = radius of curvature in the prime vertical
H = elevation of point above reference datum
r = geocentric radius of point
e = eccentricity of reference ellipsoid

It is to be noted that this coordinate system is fixed with respect to the earth’s
surface.

For points which do not rotate with the earth as, for example, discrete orbital
positions, it is desirable to define a coordinate system independent of the earth’s
rotation. The sidereal system is such a reference framework.

In this system, the Zg axis corresponds with the instantaneous pole, and the
Xs axis with the apparent vernal equinox, ¥. The relation between the T and S
systems is illustrated by Figure 1-2, the transformation being:

X X
Y| =MM, |Y| (16)
Zlg Zlp |
where
cost’ -sint’ 0
M;=|sint’ cost’' 0 (17)
0 0 1
and

cos ¢ sin¢ sinn -sin& cosn
M,={ 0 cosn sin 7 (18)

sin -cos £ sinn cos £ cos 7
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Fig. 1-2 — Siderial and terrestrial systems
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in which t’ is the Greenwhich apparent sidereal time in UTL,* and ¢, k are the
coordinates of the instantaneous pole.t

The matrix M, may be considered to be a unit matrix for practical purposes.
The component angles £, 7 are less than one second of arc. Furthermore, for short
periods of time the changes in £, n are so small that ZT and Zg may be considered
to be coincident.

*UTO is observed time; UTI is UTO corrected for motion of the pole; UT 2 is
UTI corrected for seasonal variation in the earth’s rotation. Bulletin Horaire No. 4,
Series 4, 1955.

tMelchoir P. 1954. Observatoire Royale de Belgique. Monographie No. 3,
Service International des Latitudes.
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2. PHOTOGRAMMETRIC CONSIDERATIONS

2.1 SYSTEM CONFIGURATION

Consider two overlapping frame photographs, nominally vertical, exposed at
times t, and t;. Let two symmetric convengent panoramic photographs, exposed at
times t, and t; overlap within the stereo model formed by the frame photographs.
This is illustrated by Figure 2-1.

2.2 PROJECTIVE RELATIONSHIPS

For convenience, let the panoramic photography be transformed into equivalent
frame photography, according to Figure 2-2.

Define the principal point as that position on the cylindrical panoramic format
intersected by the camera z-axis when that axis is at the mid-point of the scan.
The equivalent frame photograph is tangent to- the generator passing through this
point.

An image point x’, y’ on the pan photograph may be transformed into the equivalent
frame coordinates x, y. Consider the case for diapositives, and define the +y*-axis
in the flight direction, and the +z-axis upwards. This right hand system is illustrated
in Figure 2-2.

The scan angle ranges from -a through zero to +a as the optical axis scans from
+X through zero to -x. Let the scan rate, &, be signed positive for a forward looking
camera. Then

(x’ -xp) = - fa
(y' -y)) =y - yy) cos a (19)
(X-Xo) = -f tan «o

with image motion compensation given by

v i—sina:Csina
o

(Z - Zy)

2-1
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Fig. 2-1 — System configuration
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Fig. 2-2 — Pan geometry
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where
o (20)

then

(y -y = [y’ - ye) + C sin a]/cos a
1t is to be noted that

G-ty =aj= & -xp)/-f

The aft looking camera scans in the opposite direction, so that ¢ is negative, and
a goes from + to - values as the scan goes from x” to +x”. As before

(xn ‘X(;’ = - f” o
(x -x,) =-f"tana
(y" -y§) =(y -yy) cos a

noting that @ is + when x” is -; and the image motion is given by

——X-—-'-:f—” sin ¢ = -C sin «
(z -2y & -

where & is unsigned, or +C sin a if & is signed. Then
(y - yo) = Uy” - y&) + C sin al/cos a

provided that & carries the appropriate sign.
Xj-Xp

Any image vector | y; - Yo in the equivalent frame coordinate system, is related to

-f X1 - Xo
the corresponding object space vector, | Yj - Yq |, according to
Z1 - Zo
X; = Mj Xj (21)
2-4
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from which the projective relationships

X = Xo - f mA(Xi‘XQ)+mu%'YQ)+mAL(Zi‘ Zo)} (22)
1 0 masy (Xi - XQ) + Mgy (Yl - YO) + Mgy, (Zl - ZO)
and
giz g, £ | M2 (X; - Xo) + myy (Yj = Yy) + myy (Zj - zo)] (93)

are obtained.

In these expressions f is the camera focal length; mjk is an element of the
orientation matrix Mj; X,, Yy, Z, are the coordinates of the exposure station in the
XYZ system; Xj, Yi, Zi, are the coordinates of the ground point corresponding to the
image point xi, vi, {.

2.3 CAMERA ORIENTATION

In conjunction with the panoramic cameras, horizon sensors are utilized, which
yield initial and final values of the camera roll and pitch with respect to the local
horizon. At these specific times, the local horizon is equivalent to the tangent plane
at the nadir point, which is defined as the point at which the position vector T to the
air station intersects the reference ellipsoid. The longitude, Ay, and geocentric
latitude, ®,, of the nadir, as illustrated by Figure 2-3, are determined from

Xy cos $, cos A,
Yo =TI |COS @o sin Ao (24)
Zols sin &,

according to

=1/2
Ao = cos™? [(xo)(x%, + Y) } for X, > Y, (25)
or
int [ty )3+ v2) "] <
Ao =sin™ |(YHXG+Yy) ], for X, < ¥, (26)
and
- =-1/2
8y = tan™ [(2)x3+ )] (27)

2-5
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Fig. 2-3 — Geocentric and local coordinate systems
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With reference to Equation (21), the orientation matrix rotating the ground coordinates
into the photo system may be expressed as

coS Kj sin K 0|lcos ®j 0 -sin @j 1 0 0
M; = [-sin kj cos kj 0} 0 1 0 0 cos wj sin w; (28)
0 0 11| sin ?; 0 cos g 0 -sin wj COS wj

The orientation between the local coordinate system and the geocentric terrestrial
system is determined directly from Figure 2-3 as

cos Ay -sin Ay 0][ sin®, 0 cos ®;][-cos Ay -sinr, O

Oj=|sin Ay cos Ag 0 0 1 0 sinA, -cosiy 0 (29)

0 0 1]|l-cos &, 0 sin &, 0 0 1
Equation (21) may now be rewritten as
Xj = MjO;j (X -—io]T (30)
or
Xi - Xg X - X
vi - Yo| = [¢j]lejlwjAcli®ollre]f Yi - Yo (31)
-f Zi - Zy

The values of all terms in (31) pertain to a discrete time. For any specific time t,,
the corresponding terms may be evaluated and held constant. In this manner, the
dynamic local system may be transformed into a static one, with reference to which
subsequent computations may be performed, for any time tj, provided that appropriate
variations of X,, due to orbital motion, of wj, @j> Kj» due to capsule tumbling and of
X due to the earth’s rotation, are applied.

This is accomplished through (16), computing in the sidereal system, and
appropriately expressing variations in the angular orientations

@j = wj, Yj OT Kj as aj = (ag)y + (e ti)j + (a, tﬁ)j P (32)

so that the orientation matrices [aj] in (31) become

o] = [eo) o ][22 ), | (33)

2-1
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although information may exist which indicates thatthe a; have a specific nature,
say periodic. In this event the appropriate expressions for the @j must be used.

Denoting the product M;M, in (16) by Tj, Equation (30) may be rewritten as
Xi = MjO; [ TiXyp - Xog | (34)
or

This is in a form that is identical with (21), so that the projective Equations (22) and
(23) may be used to define the functions

Fi = Gpg + f [EKL(X'L- Xo)s + mk, (Yj - Yo)g + my, (Zj - zo)s} (35)

my, (Xj - Xo)g + mgy (Y - Yolg + myy (25 - Z)g
k=1, 2
Gyj =Xi - X
Goj=¥i - Yo
These two equations may be expressed in terms of the constituent variables w;,
@js Kjs Agy + o o v s Z,. It is noted, however that some of these are functionally

related to the orbital parameters, and to each other. The constrained solution
must utilize independent parameters, as outlined in the subsequent section.

2-8




3. CONSTRAINED SOLUTION

3.1 INTRODUCTION

The functions given by Equation
data consisting of observed variable
Those which are known, are derived
errors in these fundamental data.

On substituting the various pars:
zero if, and only if all entries are e
probable values for all parameters
constrained least squares solution,

3.2 LEAST SQUARES SOLUTION

Equation (35) is considered to
Xi, Yi X§, ¥4 x{, ¥i

where the primed and double prime
a function of the parameters

’ ’ ” ”n n
X0, Yo» X0s Yo» X0, Yoo f’ f b f

Wi, Pjs K Q wLen7;

Consequently, rewrite (35) as

Fki = fx (xi, vi» X}, ¥{, x{, |

wj, ‘.Dj’ Kj: Q w1 e

Assuming that approximate values of
a superscript °, an approximate valu

Fgi = fi [x$ v x))°, (yD°, .

(35) express the relationship between a series of
s, and various parameters, known and unknown.
from observational data and are subject to the

wmeters and data into (35), the value Fij will be
xact. The problem is to determine the most
and variables. This is accomplished through a

a function of the observed variables

d coordinates refer to the two pan cameras, and

4
)

Xy Yy, 24

”
.
b

”, 4 ’ ” ”
Vis Xo Yoo £, Xo» ¥o» ', Xos Yoo £

n, 7; X, Yi, Zy) (36)

these parameters are available, designated by
e of Equation (36) is obtained as

]

-

o

i

.. X5, Y5 2 (37

3-1
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The true values of these items is obtained by applying a correction to these approximate
values, according to
Xj = X{ + pk 0x
vi = i + pk Oyj
xi= &)+ p} ox}
yi= )"+ pk by
xi= &x{)°+ p& ox{
yi=(y{)° + p oy{
X, = Xg + qk 6%
Yo = Y0+ Qk 0y
f=1+q} of

wJ=wJ9+qK éw]’
(ﬁ-‘ﬂf +Qf1<15¢j
Ky = K]+ Qi 67
Q=0°+qP 80
w=w+q} dw
I=1°+q} oI




the values 6xj ... .. 0Zj being corrections, the values p,q being equal to unity or
zero, depending on whether the element is unknown, or known exactly.

The reduced condition equations may be expressed in the form

where Vg = a vector of unknown residuals

A, = a vector of unknown parameter corrections
4, = a vector of unknown parameter corrections
Ex = a vector of random variables
and
A - 3 (Fy, F,)ij 0 (Fy, Fplij (39)
X~ 3 (unknown variables) ~ 8 (xi, Yi)j
. 3 (Fy, Fyij _ 3 (Fy, Fplij (40)
!~ 3 (unknown parameters) 3 (all or none or xg, . . . 7)
3 (Fy, Fylij 3 (Fy, Fyij
B, 1y F2lij 1 F2/ij (41)

~ 3 (parameters to be constrained) 2 (remaining parameters)

Assume that statistical estimates of say q parameters are known, and that we
wish to constrain the adjustment to fit these estimates. Designate the statistical
estimates of the parameters 8 by

By
B°=| 83 (42)

!
o
Bq
having an associated covariance matrix og:

0%8, BBy ... OB4B; ]
0ByB; OBy ... BBy

0'[32]31 O'Bqu PR O"ZBq

-
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New linear equations may be formed and solved with (38), according to
B°+V° =B%+ 4
B f B 2

where B8° = a current corrected value of 8°

_\75 = an unknown residual vector
This equation is reformed as
Vs -E4G=0
where G = 8° - §°°
whence Equation (38) may be rewritten as

A_\7+BZ+E=O

where

V]
V=
| Vg
A,
A=
..Al.a
FEX'
E =
LG .
[Ax O
A=
10 I

(44)

(45)

(46)

(47)

(48)

(50)



and

B, By

The conditioned solution of Equation (46) for V and A which minimizes
s=vIogty (52)

is required, in which

g = (53)
0 0B

where ox = the covariance matrix of the observed variables
The required solution is obtained from
s=VIotv -aT (Av+Ba+E) | (54)

in which A is a vector of Lagrangian multipliers, setting

g% =0 and %i‘= 0
to yield

V=0cAT 2 (55)
and

-2BT =0 (56)

which are combined with (46) to yield

r=-(a cAT) " (Ba + E) (57)

I -
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and
-1
a=-[BT (AcAT)'B] BT (AcAT)'E (58)
This equation is evaluated by partitioning, the partitions being given by the following
identities:*
Ay ox Ag 0
Ao AT = (59)
0 OB

(A ox ALY 0

-1
Ao AT - (60)
0 O’B -1
Put
(Ax ox A;‘)-l = WX
BY Wy By+0g~t B] W, By
BT(Aoc AT) !B = (61)
B;r Wx B, B'1r Wx By
and
By Wy Ex -057' G
BT(AcAT) 'E = (62)

BT Wy Ey

3.3 APPLICATION

In order to clarify the previous treatment, anillustrative example of applying these
formulas to our problem is given.

*The utilization of these partitions is described in Appendix C.

3-6
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For each photograph, j, one obtains for each point i

oF,/ax;, 3F,/3y;, aF,/ax{, 8F,/ay], oF,/5x{, oF,/dy{
aF,/0x;, OF,/ dyi, 9F,/3x], aF,/3y}, aF,/ax{, aF,/ay{

or
A; = [Ax, Ag, A] i (64)
For the frame camera Axj, Ax{, are zero; for the forward looking pan camera,

Axj, Ax] are zero, and for the aft looking camera Axj, Axj are zero.

To each ground point that is known, a variance-covariance matrix may be
assigned. For unknown ground points, coordinate values are estimated, together
with large variances for these estimates.

Orbital parameters are estimated from the given ephemeris, and values of the
rotations wj, ¢j, kj are determined from horizon sensors. Values for Xy, v, f;
Xg, Yo, £ are obtained from calibration data.

The end result is that all parameters are to be constrained—some extremely
loosely—dictating that B, = 0.

Consequently, we may write (see Equation (65) on following page)

The various covariance matrices are:
ox;j for the measured frame photograph images
Uxi for the measured forward pan photograph images
Ox i’ for the measured rear pan photograph images
oXj for the ground coordinates
oc for the frame camera constants
oc’ for the forward pan camera constants
oc” for the aft pan camera constants

oa for the camera tilt angles
and

oy for the orbital elements

31
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[5F,/2x%, 8F,/ 0%y | T
aF,/ 8y, aFy/ 9y,
aF,/ of aF,/ of
aF,/ ox} aF,’ 9%}
aF,/ 8y aF,/ ay;
aF,/ af’ aF,/ of’
oF,/ ax{ aF,/ ax{
E)Fl/ 9y¢ 8F2/ dyy
aF,/ af” aF,/ af”

| 2Fy/ 3wj 3F,/ dw;

B, = | 9F,/ 0 9; 9F/ 89; (65)
aF,/ ok, aF,/ ok
aF,/ 39 3F, 39
oF,/ dw aF,/ dw
aF,/ 81 - aF,/al
aF,/ de aF,/ de
aF,/ an 3F,/ an
aF,/ 8T aF,/ ot
aF,/ 8X; aF,/ aX;
aF,/ 2y, aF,/ 3Y;
| aF,/ 024 aF,/ 32
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It is to be noted that o, may not be explicitly given, but that for a sequence of n
orbital positions a 3n x 3n variance-covariance matrix of these positions is given.
The method of determing the covariance matrix of the orbital parameters is outlined
below.

Consider the parameters p = (Q, w, I, e, n, 7). By definition, the 6 x 6 covariance
matrix of these parameters, C (p), is the expected value

Tagi] [ag]T)
dw| {dw
di | |di
C(P) = E{ de | | de ( (66)
dn| {dn
\_d'rd [ d7_| J

which may be rewritten as

[ E[ae]] [E [ae])T
E [dw] E [dw]
c@p) = ¢ E [di] b 4 E [di] > (67)
E [de] E [de]
E [dn] E [dn]
( Efdr]) & [a7],

These parameters are functionally related to the variables Xj, Y;, Zj, and thus each of
the individual expectancies may be formulated as

_2p 1, 2P 1., %P .
E {p} = ax, E {ax;} + i E {ay;} + 7 E {dz;} (68)

By successive substitution, and factoring it is found that CS can be expressed as
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20/ 0X; 99/ 0¥y aq/ aZj] 00/ 8x; 29/0Y; 29/ aZ]

dw/ 8Xj aw/aYi aw/azi 8w/aXi aw/aYi <'-)u,»/8Z-1
ai/8X; 8i/aY; ai/aZ; dX;] [ax;]T]| ai/aXx; @i/2Y; 28i/0aZ;
clp); = se/0X; ve/0Y; de/0Zi | 3;? 3;1 se/3X; se/3Y; de/2z;
an/8X; an/8Y; an/0Z; SR e axg an/3Y; an/aZ;
[a7/0X; a1/2Y; at/8Z;| | a7/0X; a1/aY; a7/az

(69)

Noting that the central factor is the covariance matrix of X1Y121, denoting the 6 % 3
Jacobian as J(p; X), then we may express C(p) in terms of C(X;) according to

c@); = I(5; Xy Xy IT(; Xy) (70)

It is to be noted that C(p); is a variable, depending on the values of X1 and the values
of C(X;), which however becomes a constant if C(X;) varies in the appropriate fashion.
This implies a dependence between successive values of Xl, as substantiated by fact.
Thus the covariance matrix C(p) determined from m successive positions may be
written as

c® = I@; X;) Xy IT(P; Xy i=1,...m

6x6 6x3m 3m x 3m 3m x 6 (11)

which is readily soluble provided that the 3m * 3m covariance matrix C(ii) is
known. It is noted that Equations (71) and (68) are identical in meaning, since the
right hand side of (71) is a summation over m points, which is in accordance with
the definition of an expected value.

The two condition equations for each ground point image are:

A;jVi+BjA4+Ej=0

where
[ Ax; o ]
(2 x6) (2x21)
A, = 0 I (72)
(21 x 6) (21 x 21) |
3-10
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Now,

Vi= [Vxi, Vyp Vxfo « - o+« Vo, VXpp VY3, V)T (13)
- B,

B = |22 (14)

-1

(21 x 21)

Aj =[x by 6F, 6x), Syg s « o oo+ 8241 T (75)

and
Ei = [Exi, Eyi, Exi, Eyi, e o s 0 o EZi] T (76)

The associated weight matrix is

0'.1 = Diagonal [ox;, 0%}, 0x{, 9¢» T¢, 08, g, Oa, 0Xjl (77)
On forming the normal equations, rewritten as NA = -C, one obtains

N = B] (a0a])7' By (78)
and

c = BT (Aj0AD) 7 E; (79)
from which the solution for A is obtained as

A=-N-1C (80)

The formal solution of (80) indicates that it will be necessary to invert a

(16 + 3; + 3;) x (16 + 3j + 3j) matrix as a minimum. If the angles w;, ¢j, ¥ are
expressed in the form a = @, + oyt + a,t? +amt™, the order of the matrix is increased
by 3mj- This is so formidable a task as to yield it impractical, even for existing
computers. Various techniques have been developed for the inversion of large
matrices. These are described in Appendix C.

However, if one reconsiders the normal equations, it is found that they consist of
two parts—one pertaining to the orbital and camera parameter data, and one relating
to the ground point data.
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Following the notation and derivation of Brown, the observation Equation (46) may
be rewritten in the form

AV+Bb+BS+E=0 (81)
where B, 5 refer to orbital and camera parameters
ﬁ, 5 refer to the ground point data
Equation (60) may be rewritten in the form
Wx 0 07 [(AgeeaD™ 0 0
w=@aD) =10 w o|=| o @t o0 (82)
0 0 W 0 0o (&
where ¢ = Diagonal [oc, o’y 0", O, oaj]
& = Diagonal [O'X,, OXgs o v v s °Xi]
Equation (82) is equivalent to
A 0 O]fix* 0o 0]AT o0 o
W=i0 I 0 0 wWOojlo I 0O
o o 1JLo o w|lo o1
Similarly (61) may be rewritten as
Wy 0 0][B B
N=BTwB=|BT -1 ol{lo W of[-I o
BT o -rjllo o wllo 1
(BTwxB + W) (BTw,B) N+W N
= (83)

BTwd)  ETwes W] (8T Nw




Similarly, Equation (62) becomes

Cc = BTWE =

(BTWxE, - WE)

i

The normal equations, NA = -C, are thus

N+W N

which for computational purposes is partitioned:

Let N-! = M, according to

Since NM = I, then, noting that M = -M N (N + W)™., one obtains

M=[(N+W) -8 KN+w-tNT]™

(N + W)~

M= [N+ W)+ (N + W1 NTM

(84)

(86)

(87)

(89)




In order to determine the corrections 5, 5, it is not necessary to solve Equation (89).
Consider

5 M M C-WE
- = (90)
5| [MT M C-WE

from which

=M -WE)+MI(C -WE)

and

-5 = MT (C - WE) +M (C - WE)
Putting

Q=+ W)t RT (91)
then

M=-MQ
and

6=MI(C-WE -Q(C -WE) (92)
Since

-[NT6 + (N +W)8)=C - WE
then

-(3) = (N - W)= (C - WE) - Q5 (93)

It is to be noted that N + W consists of i diagonally arranged 3 x 3 matrices, and
consequently presents no difficulties. M requires the inversion of a (16 + 3mj) matrix.
For the purpose of this project, this is not considered to be too large; however in

the event of large m, j, N + W may be suitably partitioned.




3.4 ERROR PROPAGATION

In the final iteration

Vx=Eg -B&-1}

and

!

< <

!

(05 M

Now

S=VIWg V+V

B &

ro, i.e.,

"WV + VTW V (94)

Equation (94) which when divided by the degrees of freedom gives the unit variance o,.

. M is the covariance n
M is that of the ground po
the covariance matrix of a

3.5 AUXILIARY DATA

natrix of the adjusted camera and orbital parameters, and
ints. It is to be noted that M =(N +W)-1 + QM QT, so that
ny point g is

Suppose auxiliary dat
which may be expressed
radar altimeter will indic
in terms of the orbital par

independent of the camera system, has been collected,

aE a function of the various parameters. As an example, a

te the value of nadiral distance, which may be expressed
ameters.

Denote the vector of quxiliary data as A, which may be written as

Ap=Fhp(Q, .

.7,)

e s T AT i
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then, as before
An = Af + VaAp (97)

The various parameters ap = (Q, w, .....7,) may be expressed as

ap = ap + 6oy (98)
so that

VAp - An, 8. .. .. App bap = EAn (99)
where

Epp = - Fnlag, 03, ... .. op) (100)

Consequently, may write an additional series of equations:
Vp -AS =Ey (101)

which, together with the covariance matrix o,, may be incorporated into the previous
solution, according to

[Vx] [B B [Ex |
val |-A 0| |8] |Ep
+ = (102)
' 1 o8] |E
vl o 1 E
to yield
(éTWxé + W+ ATWA A) BTW B N +W+ ATWA AT §
N = =
éTWxé (ﬁTWxg + W) NT N+W
(103)
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and

Similarly, auxiliary data pertaining to ground point data, (Xj Y; Z;) might be used to
exploit the relationship between auxiliary data and the various parameters.
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4, EMPIRICAL SOLUTION

Let it be supposed that it is desired to express the ground coordinates of points
as a polynomial, in terms of the panoramic image coordinates, (x;j - xo), (yj - y¢). In
order to do this with some discrimination, let the projective relationship be expanded.
Consider the form

Xi Xy -f sin a4
Yi|=|Yo|+ KiM |(y; - yo) + C sin aj (105)
Zj Z, -f cos a;

in which Kj is a variable scale factor, and M is the orientation matrix.

Now, Kj is the ratio of the length of the object space vector to that of the image
space vector, which for a tilted photograph is obtained as

K = H/f cos t cos ay (106)
which may be rewritten as

= H 2 1 6
K-fcost[l +a?/2! + 5at/4) + 61a°/6! +...] (107)

in which the suffix i has been supressed.

Denoting the elements of the matrix M as mjj, noting that the suffix i is not the
same as was previously used, the component V;, i = 1,2,3, of the last term of (105)
may be rewritten as

my [-f (@®/3! + &*/5! -...)]

Vi~ K{mj, [(yi -yo) + C (a - a®/31 + d°/5! -...)] (108)
my; [-f (1 - a?/2! + of/4! - af/6! +...)]
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Substituting (107) and (108), and putting k = H/f cos t yields

(mj; C - my (1 + a?/2! + 5a%/4! + 61a5/6! +...)
(a - &®/3! + &®/5! -, ..)
+mj, (yj - yol(1 + a?/2! + 5a%/4! + 61af/61 +. . .)

(109)

-mj; f

This yields the odd ordered polynomial of the form

Vi=A+B(yi ‘Yo) +C (xi-x0)+D(yi -yo)(xi-xo)2+E(xi -xo)3 + v
(110

since aj = (xi - xo). Provided that aj < 90 degrees, and that sufficient control points
are available for a solution, an empirical fitting using Equation (110) will furnish
ground coordinate values.
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5. EXPERIMENTAL DESIGN FOR AN ERROR MODEL

5.1 INTRODUCTION

The objective of prescribing and adhering to a designed experiment is to determine
the effects of various factors on the output data. In practice, the use of real observa-
tions dictates that the experimental data are acquired under specified conditions.

These conditions are then individually and sequentially varied. These classified data
are then subjected to statistical techniques through which the effects and interaction
of the varied conditions on the end product may be determined.

Without real data, fictitous data may be simulated from a mathematical model,
and treated in the same way. Although this, and Monte Carlo techniques, are frequently
the only solution to a specific problem, the present error model lends itself to a more
elegant and ecomonic method of analysis. This is discussed in the following sections,
in which the following assumptions are made.

1. That there will be four classes of ground control data, the classification being
dependent on the precision of these data

2. That sufficient ground control data is recognized on frame photography for
the location of the exposure stations

3. That panoramic records may contain zero or more absolute ground control
points

4. That panoramic records may be subdivided for mapping purposes into three
or four segments, each containing a minimum of nine well distributed photo-
grammetrically determined control points

5. That the data reduction procedure consists of one of the following combinations:

a. One frame and one pan photograph

b. One frame and two stereo pan photographs

c. One pan photograph and two stereo pan photographs

d. Two stereo frame and two stereo pan photographs, in which the pan photog-
raphy always overlaps the frame (stereo) imagery

6. That a sequence of one or more combinations of the preceding variations may
be adjusted simultaneously

5-1
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7. That various constraints in addition to parameters describing the vehicle path
may be employed in obtaining a solution

5.2 GENERAL REMARKS

Although the techniques of multi-factorial analysis are well known, and frequently
used, the usual approach when using simulated data is to apply perturbations to these
data and utilize a Monte Carlo technique. Little, or no use is made of sets of exact
data with variations in the weighting functions for these data.

This may be a consequence of a result being presented in the form of a variance-
covariance matrix, rather than in the form of the easily understood residual errors.
Provided that one has a set of exact data, the error term in the reduced condition
equations is always zero. Consequently the vector of parameter corrections and of
residual errors must always be zero. Consequently, no matter what weights one
assigns to the exact input data, the resulting parameter determination will always
furnish the same exact values. They are however, different in the sense that each
result is associated with factors applied to the original input material.

Varying the weights of a set of data is far simpler and more economic of computer
time than generation random numbers to perturb data prior to a solution. Furthermore,
the analysis of the resulting computations is simplified.

The suggested method is to select a set of exact data, from which one may form
the weighted normal equations using zero variances for all but one parameter or
variable. By assigning a sequence of variances to this parameter, the independent
effects of these precisions on the output data is indicated by the resulting variance-
covariance matrices. By sequentially varying the combinations of weights, different
covariance matrices are obtained, from which a complete analysis of the system can
be made.

In order that the various techniques might be better understood, and more readily
interpreted, the following section is devoted to some comments on the character of
the variance-covariance matrix. For those familiar with covariance techniques, this
section may be ignored.

5.3 COVARIANCE METHODS

The covariance of two variables x;, and xj is defined as the expected value
E {(x - uilxj - uj)} =E {(xixj)} -E&y{E {xJ} = 0i0j pij

where Hij designates the mean value of Xj,je
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Similarly, the variance of x; is defined as the expected value
E {(xi - ui)z} =E {xi} -(E {Xi})z = Oi

Assuming that the observational errors ej, of a m-variate distribution have a joint
distribution with zero means, then o} = E {ef} and 0j0j pjj = E {ei ejl. These are the
general terms of a n X n matrix, M, which is termed the variance-covariance matrix.

My my, ... mp| [E {e%} E {e; e} ... E {e, enl

Mgy My ... Myn E {ez el} E {e%} ... E {ez en}

M = . = .

mn; mn, ... mpn| |E{ene} Ef{enes}...E{ef} 3
This matrix may be normalized by transforming it into the correlation matrix,
P, in which the elements pij are obtained as

Covariance (x; X;) mij
Pij = [Variance (x;) Variance (=2 ™ fmyy - my )7

Obviously if i = j, pjj = 1,

For a multi-variate case, these correlation coefficients p;; include the indirect
dependence of both x; and x; on the n-2 remaining variables. Unless these correla-
tions are extremely small, the linear dependence of xj and x; is not obvious. The
direct linear dependence of these two variables is given by the partial correlation
coefficient

pij! (1, . . . n)/ij

This is obtained from the normal equation matrix B (the inverse of the covariance
matrix) according to

pij! (1, ... n)/ij = - byy/(byj * by)"?

Correlation coefficients of varying orders may also be defined, but are beyond the
scope of this section.

1t is of interest to consider the conditional variance defined as

oi1(1, ... n)/i=Vby
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in order that it might be distinguished from the marginal variance obtained from the
covariance matrix M, and used in evaluating the multiple correlation coefficient R;.

Consider the bivariate distribution comprised of the variables X; Xje Suppose
that the error ellipse of a point O is represented by Figure 5-1. gj, 0j, are the
projection of the ellipse on the axes Xj, Xj and are the marginal standard deviations,
whereas the lengths OP, OQ are the conditional standard deviations o (x; x,) and
o (X5 Xq).

The conditional variance is always less than the marginal variance, unless the

correlation between xj and X; is zero for all correlation coefficient Rj, defined by

ot (1,2,...n)i
R e

which is a measure of the total linear dependence of the variable x; on the
remainder.

5.4 APPLICATIONS AND ANALYSIS

The preliminary requirement for the performance of the system analysis, is that
exact data be generated suitable for the combinations listed under assumption 5. These
data are readily furnished by the computational sequence listed in Appendix A,
Construction of Fictitious Model.

It is to be noted that these calculated data are exact, save for truncation errors.
As indicated in the descriptive section,the resulting photo-coordinates are not subject
to displacements caused by aberration, atmospheric refraction, lens distortions and
the like. This is unimportant, since in practice such displacements would be removed
from the measured image coordinates, as far as possible, before being subjected to
the main data reduction scheme. It is however, an extremely simple modification to
include these displacements should they be required.

From these computed data one obtains a series of exact photo-coordinates, related
to the corresponding exact ground coordinates with a transformation involving exact
flight and camera parameters. The objective of the subsequent computations is to
determine the effects of various inaccuracies in these coordinates and parameters.

To illustrate the method of achieving this end, a consideration of the effects of
errors in the measured photo-coordinates on the determination of ground points
coordinates, will be made in some detail.

These are four distinct cases listed under assumption 5. Consequently, there
will be four sets of parallel computations. To determine the independent effects of
errors in the measured photo-coordinates on the end results, the influences of camera
and vehicle path parameters are excluded by assinging to each of them, a zero variance.




Q c”(Xj xi)

T(xi xj)

Fig. 5-1 — Error ellipsoid
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The measured photo-coordinates are assigned variances (and covariances) proportional
to the specified measuring errors under investigation. Since the system parameters
are exactly known, together with the transformation relating ground and photo-
coordinates, the exact ground control data will be assigned zero weights. In this

way, the resulting variance-covariance matrices of the computed ground points

reflects only the influence of the errors in the measured image coordinates.

It is suggested that five solutions be obtained for each case corresponding to the
selected standard deviations in image measurement of +1, +2, +4, +8, and + 16
microns. These standard deviations are not quite arbitrarily selected, since they
correspond to the quoted standard deviations of specific instruments covering the
range of envisioned mensuration equipment,

The variance-covariance matrices of the results, is the important output. They
indicate the effects of the estimated measuring errors or the ground coordinate
determination. Recalling the previous section, the diagonal elements of these matrices
represent the marginal variances of the ground coordinates,

In the event that the computational procedure preserves the normal equation
matrices, conditional variances, together with the multiple and partial correlation
coefficients are determinate. However, it is not usual to preserve the normal equations
in a solution by electronic computer, owing to storage requirements. In this event,
one can only manipulate with the variance-covariance matrix to furnish correlation
coefficients, which indicate the effect of all other parameters and variables on that
one which is being investigated.

However, remembering that the partial correlation coefficients reflect the effect
of a single parameter on the end result, and that the multiple correlation coefficients
indicate the effect of some selected parameters or variables, one realizes that this
is exactly what the designed computational procedure accomplishes. Admittedly, if the
effects of photographic x-coordinates are to be divorced from those of the associated
y-coordinates, one should assign zero variance to that group of coordinates whose
influence is to be deleted. This adds two more computational sequences—yielding two
partial (x, y) correlation coefficients and one multiple (x y) correlation coefficient.

At present, it is not at all apparent what advantages such a refinement would yield,
apart from a more complete analysis. This has been mentioned, however, to point
out that any specified degree of refinement is easily attained. This provides a method
whereby the effects of measuring errors in the panoramic and frame imagery can be
separated, leading to valid selections of the appropriate image measuring engines.
Furthermore, it indicates that retention of the normal equation matrix is unnecessary
for this portion of the system analysis, implying storage for a larger volume of
pertinent data.

At the end of the computational sequence, one has amassed a sequence of variance-
covariance matrices, and their normalized equivalents, the correlation matrices.

5-6
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Such numerical data cannot be readily interpreted and evaluated, even by those to whom
numerical analysis is second nature.

It would appear that the most striking, and clearly understood, manner of pre-
senting these individual and collective data, is in graphical form. This has the added
advantage of being concise and indicative of subtle nuances. The suggested basic
presentation illustrated by Figure 5-2, is to present a series of graphs whereby the
abscissa represents the standard error of the photo-coordinates, and the ordinate that
of the ground coordinates. Correlations, linear, partial, or multiple, are readily
presented in the form of regression graphs.

The preceding discussion is readily extended to account for the individual effects
of each variable or parameter,* so that the basic portion of the system error analysis
‘may be considered virtually complete, once the sequence of parameter variation has
been specified.

This analysis, however, is restricted to a consideration of those factors explicity
contained by the transformation formulae. There are certain other factors influencing
the results, which one has the tendency to ignore owing to their undefined effects. Of
these, perhaps one of the most significant, is the geometric location of control and
ground points with respect to camera axes. It would appear that the best manner of
performing an analysis of this factor is through a judicious selection of control data
and of points to be determined. The results could be suitably presented in the form
of a double entry graph-—that is with respect to both input variances and angular
location of the point.

A similar treatment of the various combinations of ground control data, with
respect to both quality and location, will also be performed.

This preliminary error analysis, contained in Table 5-1, is now formulated in
some detail, according to the following scheme. It is pointed out that the scheme
should be applied to each of the four cases listed under assumption 5, and that it is
easily simplified, or modified to include a more complex model.

The numerical data obtained from these calculations and their graphical presenta-
tion, provide a sufficiency of data for a thorough system analysis. Furthermore, these
data are sufficiently extensive to provide the basis for construction of elegant

*Henceforth, parameter is used in the sense of a parameter or variable, unless
otherwise indicated. It can be numerically demonstrated that the results of a con-
strained adjustment are the same whether the unknowns are considered to be
parameters or variables. The formal proof of this, has yet to be derived; numerical
demonstrations indicate that mathematical induction might be the easiest method
of deviation.
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Table 5-1 — Schematic Formulation

Varied Parameters

Photo-coordinates

(x4 y4), (x7, y")
(x 7o), (X", y")

Inner orientation elements

(xps ¥py £, &p, vy £, (xp, ¥, £7)

Angular orientation elements

. 4 4
wj, Wi, wi

Angular orientation elements
iy @i @1

Angular orientation elements
K3, x;, Ky

Vehicle path elements

Q’ w’ I, e! T’t

Pan camera timing
te,

Ground control quality
X Yy, Z4

Ground control quality -
(combinations)

Xiy Yp Zl

- o

b N -
N - =

Remarks

Vary individually, in combinations according
to desired results. Use sequential standard
deviations of 1, 2, 4, 8, and 16 microns.

Vary individually, in combinations according
to desired results. Use sequential standard
deviations of 1, 2, 4, 8, 16, and 32 microns.

Vary individually, in combinations according
to desired results. Use standard deviations
of 17, 5”, 10", 30", 1, 2'.

See 3.
See 3.

Vary individually, and in combinations. Use
a range of variances to cover all expected
cases.

Vary individually and in combination, using
a range of variances to cover expected errors.

Use 1 all grade I control

Use 2 all grade II control
Use 3 all grade I control
Use 4 all grade IV control

Judiciously select a reasonable sample from
all combinations.
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Table 5-1 — Schematic Formulation (Cont.)

Varied Parameters
10. Ground control location
Xi, Yi’ Zi

11. Ground control location and
quality combinations

12. Photogrammetric parameters
and ground control

13. All system parameters

9-10
oS A
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Remarks

Judiciously select a reasonable sample of
possible control configurations. Use
homogeneous data, in each of four sequences.

Use samples 9 and 10 to construct a
resultant sample for analysis.

Assign zero variances to vehicle path
elements. Use reasonable expected values
for errors in other parameters, and resonable
control distribution.

Assign reasonable expected variances to
all system parameters.
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prediction and control nomograms. Although the basic system error analysis has
now been adequately defined, it is thought that the ever recurrent theme of relative
v absolute accuracy should be discussed. This is the topic of the succeeding section.

5.5 RELATIVE AND ABSOLUTE ACCURACY CONSIDERATIONS

1t is frequently noted that the use of rigorous error propagation techniques using
closely estimated variances leads to surprisingly large system errors. As an example,
if the well known error equations derived by Brandenbeger are applied to a convergent
strip camera system, which has an extremely high resolution, it appears as if precise
mapping from these records is not possible. This is a consequence of absolute position
and orientation errors of the complete system being quadratically combined, so that
the variance that must be assigned to a small just detectable length may be ten or
even one hundred times the length itself.Although it is possible to detect and measure
the images of small objects with great precision, it is difficult to maintain any degree
of accuracy. This difference, between relative and absolute accuracies, epitomizes
the different usages of imagery by interpreters and cartographers. In order that one
might determine this relative accuracy it will be necessary to consider every
parameter to be exact, (in a two photo-mode’, save five elements which are necessary
to determine the relative orientation between two pictures. Consequently, ina p
photosystem it will be necessary to maintain exact values for all but 3n - 1 parameters.
For convenience, it is recommended that the angular orientation elements, wj, ¢j,
Ki be those that are varied—being virtually independent of any other parameters.
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Appendix A
CONSTRUCTION OF FICTITIOUS MODEL

1.0 INTRODUCTION

This aspect of the problem is to compute exact data by means of which the
methods of data reduction and analysis might be tested, and computer programs
optimized. The construction of these data falls naturally into four sections.

2.0 DETERMINATION OF SATELLITE POSITION
AT ANY TIME t;

For convenience times will be assumed to be given in Greenwich Apparent
Sidereal Time. Although the time measurement may be in some other system,
conversions are simple, but necessary.

Given Data

Orbital Parameters: §, w, L e, n, 7
Geophysical Constants: u = GM = 3.98603 x 10%° ¢m3/sec? (Kaula 1961)
Observed Time: t; (in GAST)

Comp_\._\tation

1. Determine semi-major axis, a, of orbit

1/8
a=(un? (111)

2. Determine mean anomaly, M;, at time t;:

a. Compute

Xj =-n7 (112)
b. Compute

M; =nt; + x5 (113)
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3. Determine eccentric anomaly, Ej, at time t;
Ej = M; + e sin E; (114)
This is performed iteratively according to
M; = E{ (115)
which is substituted into

[o1a] [~] » o
Ei —Mi+es1nEi

4. Determine the Geocentric Terrestrial Coordinates of the Satellite position
Xy
ry =1Y; , according to

1
Z; | T

1/2

cost; sin tj0 J[cosQ -cosI sinQ7[cos w -sin w'l ~e + cos(E;)
1'-’1 = a | -sint; costj 0|sin® cosI cos||sin w cos w| (1-€*) sin E, | (116)

0 0 1jL0 sinl

3. Determine the heading, geocentric latitude, and longitude of the nadir

-1/2

cos Ay = X; (X + Y}) (117)
-1/2
sin 4 = Y; (X¢ +Y)) (118)
2 -1/2 R ’ -1/2
cos &, = (xf +Y) &+vi+ z?) (119)
: 2 w2 ooy 2
sin®, = Z; (X! + Y; + 2}) (120)
cosAy=sinl cos (Ay - Q) (121)
sinA, = cosI/cos &, (122)
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3.0 DETERMINATION OF CAMERA DATA

Given Data: Camera half angle a/2
Ellipsoidal semi-major axis ¢
Ellipsoidal eccentricity e
Flying height H
Camera roll, pitch, wj, ¢j

Preliminary Computation - frame cameras

1. Determine flying height H
H=Irj! -R (123)
(R = radius of earth)

2. Calculate the azimuth to each of the four corners of the imaged terrain from

the nadir point Ao,
Ay =Ag+ 511/4 = a, Ag,
Ay
A02=Ao+ 7H/4= Qo
A, =Ag+ 11/4= 04 (124)
3
Ay

A04 =Ao+ 3 l'I/4= ay
Ao,
3. Compute geodetic latitude of nadir, ¥, from geocentric &,
2 -1/2
sin ¥, = tan ®,[tan? &, + (1 - €?) ] (125)

4, Compute radii of curvature at nadir

Np =2 (1 - g?sin® ¥,)""2 (126)

Ry =a(l - )1 - e? sin? g,)"¥2 (127)

‘,m”w
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5.

A-4
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Compute mean radii of curvature

No Ry
= = 1
Raj = Rag R, sin® a, + N, cos® a, (128)
and

Ray = Ray = Ny Ry (129)

R, sin® a, + N, cos® a,

Compute the angle 6 o subtended by the arc from the nadir to four corners
according to

(R0+H) sin 0/2}_(1/2 (130)

= in-t
Bozi sin { Ri

where a/2 is the diagonal half angle of the photography.

Compute the arc length Sai according to
Sai = Rai Gai, (90,i in radians) (131)

Compute geodetic coordinates of the four corners according to Rainsford’s
modification of Clarke’s formula:

Sq: €OS a;
a) W =¥+ = (132)
07 70" Ry sin 17
¥g + ¥,
b) ¥ = -—9—1’2-—9— (133)
c) compute Ry :
Ry =a(l - e’)(1 - e? sin? ¥)"¥? (134)
d) compute
Szai sin a@; cos o4
Pi = 3R, N, sin 17 (135)

S wm fxrs.—s‘ﬁ



e) compute

q; = p; tan o; tan ¥ (136)
f) compute Sy (cos a; - 2p;/3)

b =¥+ { Ry sin 17 ql} (137)
g) compute

Ny, = a(l - e sin® ¢,)°1"2 (138)
h) compute

. o_ + [sai sin (o, - 1p;/3) } 159)

cos (¥; + qi/3)N‘I,. sin 1”
i

These values ¥, N define the limits within which the control data for each frame
camera are to be determined.

This sequence of computation is performed for both frame cameras.
For each frame camera, designate the corner points of coverage as &{, A{,

$3, A, B3, A§, B4, MG @1, A, @f, A, @, A{, ®{, N]; as in the following diagram:

1M &7 M ®5 Ad & A
®] A &7 N ®4 4 ®f N
Put #f, A = & XA

TR ¢
"')NTROL SYSTEM -t



P, A = Py As

B, A = By, M

Then the area covered by the two photographs is bounded by the points &,, A,;
QZ, A2; ‘I’sy AS; QA’ A4'

Let this area be evenly covered with geodetic control points, comprising I evenly
spaced rows and J evenly spaced columns.

Then any control point &;j, Xij has coordinates of

®4; = @y - [(23 - 1)@, - &,)/23] -[ (2 - 1)(&; - &,)/21]

ij
+ @ - D@ - @) - 85+ &5 - 3,)/417] (140)
and
Ay = A= (@ - DOy - 22)/20] - [ - 1)y - A)/2]
+ {2 - D@ - 10y - 2+ A5 - 2)/41] (141)

4.0 SPACING OF CONTROL

Although it is not essential for a super abundance of fictitious data to be generated,
it is desirable from the point of having superfluous data for statistical purposes.

It has been stated that each of the panoramic photographs (models) may be divided
into three abutting segments, each of which will contain a minimum of 5 control points.
It is considered desirable that there be three columns of control data, one central
column and two lateral, according to the following diagram. Furthermore, there will
be seven panoramic models per frame model, which are assumed to be butt joined,
dictating that 21 columns of control per overlap be established.

Let it be assumed that the panoramic photography has been rectified to fit the
frame photographs. If the format size of the frame is a X a mm? with p-percent
overlap, then the width of the pan model is

CANTROL sveress ~
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The spacing between each column of control data is

v __P_ .
3 - 2100 2 ™Mm

and the total number of control points per row is

100 p - 100
J={p + 100})(21

Assuming p = 60 percent, J = 44

The interval between each control point is approximately 6 to 7 millimeters, for
a 9 by 8 inch format.

Arbitrarily, select the rows of control data 10 millimeters apart, to yield I = 23
for a 9 by 9 inch format, i.e.,

This leads to 1012 points for the covered area.

5.0 COMPUTATION OF PHOTO COORDINATES

5.1 Frame Cameras

1. Compute &ij, i] for each control point within the limits according to
Equations (141) and (142)

2. Generate I X J random integers between 0 and 100 meters. Associate these
with the ‘I’ij R Aﬁ in sequence, to represent the point elevation, Hij’ above the
reference ellipsoid

3. For the frame exposure times t,, t,, in Greenwich apparent sidereal time,
compute the geocentric sidereal coordinates, according to

X cos ti-sintj O (N + H) cos g cos A
Y| ={sintj cost;0 (N + H) cos ¢ sin A (142)
Zj; | O 0 1| [0+ e)N+ H sineo

ij ij

4. Compute the geocentric sidereal positions of each camera station according to
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Xo cos © - cos I sin cos w-sin w|{l1 0 [cos E-e
0(1-¢%)"% sin E (143)

Y, =a |sinQ coslcos Q sin w cosw L

Zolty 0 sin I

as outlined in paragraph 2, this section

5. For each exposure station, compute the converted photo-coordinates of each
point, according to

‘m (X; - Xg) + myy (Y - Yo) + myg (Z5 - Zy)
X: = Xo -f 11 1 0 12 1 0 13 i 0 144
1=% my (Xj - Xo) + my, (Yj - Yo + mys (2 - Zy) (144)
and
[my (Xj - Xo) + myy (Vi - Yo) + myy (Z - Zo)
yl = YO -f (145)
hn'lal (Xl - XO) + M3y (Yl - Yo) + Mgs (Zl - Zo)
in which the values my, are given in Appendix B, detailed formulation,
Equations (159) through (167)
6. Reject all points which fall outside the desired format limits
7. It is noted that these are corrected photo-coordinates. If desired, apply
displacements due to aberration, lens distortion, atmosphere refraction, etc.
5.2 Pan Cameras

Consider the equivalent frame camera coordinates given by (145), (144) in the
previous section, rewritten as

U; .
X, = -f — (146)
i .
i
and
Vi
y; = -f W-l' (147)
noting that
Xg=y9=0
A-8
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Let the equivalent frame be exposed at the mid-point of the scan, at tyj. Any
control point ‘I’ij , Aij is scanned at some other time t;. By selecting an approximate
value of t; = t{, approximate values of x; = )gf

yi= ¥
U = U
v, = Vi°
W, =W

may be determined. Consequently one may write

o X
i1 a(x;)/at

C=te . i
i~ 54 a(y;)/at

Uy ¢
S Y (7 /2 S
Since y; is the most rapidly changing function with respect to time, use

i

=t - 67/t (148)

as the control equation. This is rewritten as

=t - (V/W) (v;/W;)/at)" ' (149)

0P SEGAET




in which

(amn X. - Xp) + 8mg2 (Y - Yy) Ay amz3 (Z; - Zy)

at i
0Xi 9Y. 9Z;
+ mzl ;’ + mzz 3t 4 mzs ';t_
aX aY 37
o oy _ ° - _J_ _g - ___Q
Ve ] 3 8m's
¥ rrm (X1 Xy) + maz (Y Yo)+ 3 (Zi Zy)
aXi »x Y Y 8Z; 37z
it} T ] —_ . 54
i PYIP T R 1 FY at | T8 5t T ot

In this equation

. o .
— = -a [(cos w cos § - sin Q sin w cos I) sin (E - e) +

at (151)

_ a2)1/2 ; . _n
(1-e? (cosQsmw+sm9coswcosl)cosE]l_ecosE

3—5}: -a [(cos w cos Q + cos Q sin w cos I) sin (E - e) +
(152)

_ /2 (e o _n
(1 - e?)"? (sin Q sin w cochosc..vcosI)cosE]l_ecosE

%—Zt—1= - a [(sin I sin w sin (E - e) -
21/2 s ..n (153)
(1 - e?)"? sin I cos w cos E] T o oos B
3Xj .
—7 = -X;sintj- Y cos t; (154)
aY;
Yy _ - '
—+= “Xjcost - Y;sint (155)
92Z;
34 _ 4
— (156)
A-10
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The various values of amk)/8t are obtained as

omyl _ dMil 2wy M d¢j Mg 8K

= . (157)
at dw at acpj at 8Kj at

Since the orientation angles are expressed in the form of

wj = Wy + u)(ti - ty)
‘Pj = @ + (P(ti - to) (158)
Kj= K0+K(ti°t0)

the terms aw./at, aw./at, ax./at are evaluated as in w, ¢, K, respectively.
The expressions amkl/aa @ = wj, ¢j, OT Kj are given by Equations (207) through

(233), Appendix B, which require the appropriate values of wj, Pj, Kj as given by
Equation (158), above.

The specific computational procedure is:

1. Assumet] (% toi)
2. Determine Xj, Y;, Z; according to (142), for t;
3. Compute Xy, Y, Z, at timet; according to Equation (143)

4. Evaluate my,, according to Equations (98) through (108), Section 4, using
a: = Qg+ O (t;- tOi)

]

5. Compute V{, W; and Y;’ , according to Equation (147)

6. Compute #Xj/at, .... 8Z/st, according to Equations (151) through (156)
7. Compute amkl/a a; , according to Equations (207 through (233), Appendix B
8. Compute the six equations 8my,/at according to Equation (156)

9. Compute a(V{/W:)/at according to Equation (150)
10. Evaluate Equation (149):
" =t/ - [a(Vy/W))/at ] =1 (Ve/W))

1
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11. Put t° = t
1 1

12. Repeat steps 2 . . . 11 until the value of
4] [<] [+] o -1
(V5/W) (0 (Vi/W;)/ at)

is negligibly small.

This is done for each of the points on each of the equivalent frame pictures. These
points are then transformed into the appropriate coordinates x/, yi’ , according
to Eqs. (19) and (20) in Section 2.

1
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Appendix B
DETAILED FORMULATION

The terms of the orientation matrix M = MjOj, are suppressing the subscript j on

all except

myy =

myy =

the rotation wje

-cos X {[cos k cos ¢ cos Ay + (sin k cos wj + cos « sin ¢ sin w;) sin Ayl
sin &, - (sin k sin w; - cos « sin ¢ cos w;) cos &0}
+ [cos k cos ¢ sin A, + (sin k cos wj + cos k sin ¢ sin wj) cos A,] sin A

(159)

= =COS Ay {[-sin k cos ¢ cos Ay + (cos k cos wj - sink sin ¢ sin wj) sin Ayl

sin®, - (cos k sin wj + sin k sin @ cos wj) cos &}
+ 8in X, [sin k cos ¢ sin A, + (cos k cos wj - sin « sin ¢ sin wj)cos A,

(160)

-COS Ay {Isin ¢ cos Ay - cos ¢ sin wj sin A,] sin &, - cos @ cos wj cos &}

+sin Ay [-sin ¢ sin A - cos ¢ sin wj cos A,) (161)

= -sin A, {[cos « cos @ cos Ay + (sin k cos wj + COS K sin ¢ sin wj) sin Ag)

sin &, - (sin ¥ sin wj - cos «k sin ¢ cos wj) cos <I>0}
-cos Ay [-cos k cos v sin A + (sink cos wj + cos k sin ¢ sin wj) cos Ay

(162)

= -sin A, {[-sin « cos © cos Ay + (cos k cos wj - sin k sin wj sin ©) sin Ay]

sin &, - (cos « sin wj + sin k sin ¢ cos wj) cos &}

-cos X [sin « cos @ sin A, + (cos k cos wj - sin« sin © sin w]-) cos Ag]

(163)




mg, = -sin g [(sin ¢ cos A, - cos ¢ sin wj sin A,) sin &, - cos ¢ cos Qj cos &)

-COS Ay [ sin @ sin Ay - cos ¢ sin wj cos Ao] ' (164)

Myg = [cos « cos @ cos Ap + (sin k cos wj + COS K sin ¢ sin w]-) sin A} cos &,

+ (sin « sin wj - €OS K sin ¢ cos wj) sin &, (165)
my; = [-sin k cos ¢ cos Ay + (cos « cos wj - sin « sin ¢ sin wj) sin Ag] cos &,
+ (cos « sin wj + sin « sin ¢ cos wj) sin &, (166)
my; = (sin © cos Ag - cos ¢ sin wj sin Ay) cos &, + cos ¢ cos wj sin @, (167
In which
cos Ay = X/ (X3 + Y212 cos &y = (X + YV + Y + D)1~
sin Ay = Y/ (X3 + Y2112 sin @ = Zo/(X} + Y& + Zd)V? (168)
cos Ay = sin I cos (3, - Q) sin Ay = cos I/ cos &,
3F;/3x%; = 1 aF,/3x%; =0
aF,/3yi=0 9F,/9yi =1
8F,/8x, = -1 3F,/9x, = 0 (169)
3F/8y, = 0 3F,/3y, = -1
aF,/3f = Uy/W; aF,/3f =Vy/W;
where
U; = my; (X5 - Xo) + myp (Y5 - Yo) + my3 (Z4 - Zp) (170)
Vi = my (Xj - Xo) +mygy (Y - Yo) + mys (Z; - Zy) (171)
Wi= os L¥Y (Xi - Xo) + Mgy (Yl - Yo) + M33 (Zl - Zo) (172)

For pan camera it is noted that it is more appropriate to use the expressions

Ui
Fl = tan Q'Wli




and

Vi
Fo=(y -y + ' =
2=\ = Yo Ww;
whence one obtains
9F,/0x; = - sec? aj/f’ 8F,/0xj = - C [1+(y’ - yo) tan® o )/1’
aF,/dx, = + sec? aj/f’ aF,/9x, = + C (1 + (y’' - y§) tan® ol/1’
aF,/3y; =0 aF,/3yj = + sec a4 (173)
9F;/9yy =0 3F,/8y, = - sec a3
3F,/3f = - a; sec? ay/f’ aF,/3t = (V/W) - a; [C - (y' - yp) sin &;]/f'cos? a;

Note that although

C =

5l
RIm

C is not a variable in the expression F,, and must be considered invariant. Further-
more, it is important to note that for a pan camera, the factor (f') assuming the
subsequent partial derivatives should be made equal to unity.

Working in sidereal system, i.e., put

Xi=Xjcostj -Yjsinti, Yig =Xj sintj + Yj costj , Zjg = Z

g’i‘s = %VL [mu cos tj + my, sin t; - %(mu cos tj +mg, sin ti)] (174)
:—.5—‘; = ‘iﬂf- [—m“ sin t; + my, cos tj -—g—(-mm sin t; + mg, COS ti)] (175)
:_%S B %;f‘ [mts ‘% mas] (176)
:—}FEL =—% [+m21 sin t; + my, sin tj -% (+mj, cos t; + mg, sin ti)] (177




%%; = :Vi [—-mn sin tj + my, cos t; -%(-ma, sin t; + my, cos ti)] (178)
0F, _H A (179)
3Zi5 W (m” w m”)
Define
X Ay + By [cos (E) - e]
Y| =|Ay + By|[sinE = R, (180!
Z Az + B,
Ay = a(cos Q cos w - sin Q sin w cos D
Ay = alsin Q cos  + cos Q sin w cos D
A, =alsin I sin w)
z o (181)
By = -a(1-e?)"* (cos Q sin w + sin Q cos w cos 1)
By = -a(1-e9"? (sin Q sin w - cos Q cos w cos I
B, = a(1-e9"? (sin I cos w)
3aX° . .
sq = @ {(sin 2 cos w + cos © sin w cos D{cos (E) - e]
- (1-e9"? (sin Q sin w - cos Q cos w - cos 2 cos w cos I sin E}; (182)
3Y° . .
sg - 2 {(-cos Q cos w + sin Q sin w cos D) [cos (E) - e]
+ (1-9Y? (cos R sin w + sin £ cos w cos I) sin E} (183)
9Z°
59 =0 (184)
ax° . .
o = -a {(cos @ sin w + sin Q cos w cos I) |cos (E) - e]
+ (1-e))"% (cos © cos w - sin © sin w cos I sin E} (185)
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where

oY {(sin  sin w - cos  cos w cos I) [cos (E) - e]

ow

+ (1-e9)Y? (sin © cos w cos 2 sin w cos I) sin E} (186)

e 1/2

gczo = +a {sin I cos w [cos (E) - e] - sin I sin w sin E (1-e? & (187)
9X° . . . [ (E) ] ( 2)1/2 . . . ( )
sp~ = 2{sin @ sin @ sin T [cos (E) - e} +(1-e sin Q cos w sin I sin E} (188
Y° . . n1/2 . .
5T -2 {-cos  sin w sin I [cos (E) - e] - (1-e?)"? cos © cos wsinIsinE} (189)
3Z° . 172 .
T a{cosIsin w [cos (E) - e] + (1-e?)" " cos I cos w sin E} (190)

5
8% . a{(cos € cos w - sin Q sin w cos I) [Ae]

de

- [Be] E (cos 9 sin w + sin © cos w cos D} (191)
:—:—" = a{(cos Q cos w + sin € sin w cos I) [Ae]

- [Be] (sin © sin w - cos  cos w cos 1)} (192)
3
5-52-‘1 =a {sinI sin w [Ae] + [Be] sin I cos w} (193)

[Ae] = _[ sin’ E ]

1+1-ecosE

[Be] sin E (cos E - e)

" (1-e cos E)(1-¢?)V/2

It is noted that the problem will be concerned with observed times t;. Since M is a
function of tj, the time of epoch 7 will be usedasan independent variable.




“nNo

i —

-a[(cos w cos © - sin Q sin w cos D) sin (E)

+ (1-e)V2 (cos Q sin w + sin R cos w cos I) cos E]

-a [(sin © cos w + cos © sin w cos I) sin (E)

+ (1-e)1? (sin © sin w - cos Q cos w cos I) cos EJ

-a [sin I sin w sin (E) - (1-e?)¥? sin I cos w cos E]

9X°
amn
-2 Rx “1/3 n‘5/3/3a
3Y°
an -
-2 Ry u!® 17%/3/32
9Z°
—
-2 Ry ul3 n™5/3/3a
aX° _9X° _-m
aT Mty -T
3Y° 3Y° _-m
at ty -7
9Z° _232° -1
37 T am  ty-T
aF,j
i+ - omyy _
W T Wi {( 1 X°)[a Ty
dmy,
+Qi‘Z)Lw.‘Fu
j
B-6
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tj -7

(1-e cos E)

tj -7

(1-e cos E)

tj -7

{1-e cos E)

(194)

(195)

(196

(197)

(198)

(199)

(200)



+ (Zi - Zo) [3;(1013 - ],"1. .am33]} (201)

3k Wi 3K i73 3%
a d
+ (25 - Zy) [a'::ts - Ty _;n_wz a]} (202)

+(z, -z, |38, 20y (203)
1 awj 1 3wj

% ¢ 8¢ g
- o
- =3 _ 33
+(z, - 29 |28 - 1y 1B } (200

om om
- 28 .,
+(2y - 20 [BK T ax]} (205)

OFki . L 8m;j m 5 5
3E Wi{(xl i x°)[ TR S Y: ] (¥ - ) [ st - Lki —a'gﬂ]
am am
+(2;- 29 [8—5}9 " T _a‘gm]} (206)
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where

= Eki (Xi - XO) +m L(YL- Yo) + mka (Zi - Zo)

Tki myy (Xj - Xo) + my, (Y - Yo) + myy (Z - Z)

k=1, 2

3 .
3_31* cos A [(sink cos wj + cos « sin ¢ sin wj) cos &,
]

- (cos k sin ¢ cos w - sin « sin w) sin A, sin &)

+ sin A cos A, (cos k sin ¢ cos w - sin k sin @) . (207

3 . . .
%11: sin A, [(sin « cos w + cos « sin ¢ sin w) cos &,
i

- (cos « sin ¢ cos w - sink sin w) sin A, sin &,]

- cos Ay cos A, (cos k sin ¢ cos w - sin k sin w) (208)

)
I8 = (cos « sin @ sin w + sin k cos ) sin &,

awj
+ (cos « sin ¢ cos w - sin « sin ) sin A, cos &, (209)
om . X X . :
51,—_21= coS A [(cos k sin w + sin k sin ¢ cos w) sin A, sin ¥,
]
+ (cos k cos w - sin k sin @ sin w) cos ¥;]
- sin X cos A, (cos k sin w + sin k sin © cos w) ‘ (210)
om . : . . . .
aw—”= sin Ay [(cos k sin w + sin « sin @ cos w) sin A, sin &,

j
+ (cos k cos w - sin « sin ¢ sin w) cos &)

+ cos A (cos k sin w + sin k sin ¢ cos w) (211)

am . .
a—w.m:(cos K €0S w - sin k sin ¢ sin w) sin @,
]

- (cos « sin w + sin k sin ¢ cos w) sin A, cos &, (212)
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—Ton-sechenfR
]

am : o :
S—w_u = cos Ay [cos ¢ cos w sin A, sin €, - cos ¢ sin w cos $]
]
- sin A cos ¢ cos A,
am ; : - :
—3% = gin Ay [cos @ cos w sin A, sin $, - cos ¢ sin w cos D]
aQ)j
+ COS A( COS ¢ COS W €OS Ay
am - . .
—3 = - cos ¢ cos w sin A, cos ®, - cos ¢ sin w sin &,
0. 0 0
]
am - : : .
?;1 = cos A {[cos k sin ¢ cos A, - cos k cos ¢ sin w sin A,] sin &,

- cOS k ¢OS @ cos w cos Py}

+ sin Xy [cos « sin @ sin A, + coS k €OS ¢ sin w cos Ag)

2

—al';n= sin A, {[cos ksin ¢ cos Aq - cos k cos ¢ sin w sin Ay} sin &,
- cos k cos ¢ cos w cos Py}

- cos Ay [cos k sin ¢ sin Ay + cos k cos ¢ sin w cos Ay

) . . .
—13 = cos &, (cos k cos ¢ sin w sin A, - cos k sin @ cos A,)

- oS K €Os ¢ cos w sin ¥,

= cos Ay {[sin k cos ¢ cos w cos &,

-[sin k sin.¢ cos Ay + sin k cos ¢ sin w sin Ay] sin ®,}

- sin ) [sin k sin o sin Ay + sin k cos ¢ sin w cos A]

(213)

(214)

(215)

(216)

(217)

(218)

(219)




@
g

:

(9}

= sin A, [(sin k sin w cos ¢ sin A, - sin « sin ¢ cos Ay sin &,

+ 8in k cos ¢ cos w cos )

+cos A (sin x sin ¢ sin Ay + sin k cos ¢ sin w cos Ay) (220)

= (sink sin ¢ cos Ay - sink cos ¢ sin w sin Ay) cos &
0 0 0

+ sin k cos @ cos w sin &, (221)

= sin A, (sin ¢ sin w cos A, - cos ¢ sin Ay

- COS Ay [(cos @ cos A; + sin ¢ sin w sin A,) sin &,

+ sin @ cos w cos &) (222)

= cos Ay (cos ¢ sin A - sin ¢ sin w cos Ay)

- sin Ay [(cos ¢ cos A, + sin ¢ sin w sin Ay) sin &,

+ sin ¢ cos w cos ®,] (223)

= (cos ¢ cos Ay + sin ¢ sin w sin A, cos &,

- sin ¢ cos w sin &, (224)

cos Ay {[sin k cos ¢ cos Ay + (sin k sin @ sin w - cos k cos w) sin A,)

sin &, + (cos « sin w + sin k sin ¢ cos w) cos &,}
+ sin A [sin k cos ¢ sin Ay + (cosk cos w - sin « sin ¢ sin w) cos A,]

(225)




am . : : . : .
—a—KE = sin A {[sink cos ¢ cos A, + (sin k sin ¢ sin w - cos k cos w) sin Agy]

sin &, + (cos k sin w + sin k sin v cos w) cos <I>°}
- ¢0s )\, [sin k cos ¢ sin Ay + (cos k cos w - sin k sin © sin w) cos Ay]

(226)
) . .
—aiz—m=[(cos K €OS w - sin k sin ¢ sin w) sin A, - sin K cos @ cos Ay) cos &,

+ [cos k sin w + sin k sin ¢ cos w] sin &, (227)

3 . . R .
_5“;‘2L= cos A {[(cos k cos ¢ cos A + (sin K cos w + cos k sin ¢ sin w) sin A,)

sin &, + [cos K sin ¢ cos w - sin k sin w] cos &}

+ sin Ay [cos k cos ¢ sin A, - (sin k cos w + cos k sin ¢ sin w) cos Aq]

(228)
8:’1(22 = sin Ay {{cos k cos ¢ cos Ay + (sin k cos w + cos k sin ¢ sin w) sin A,)
sin &, + (cos k sin ¢ cos w - sin k sin w) cos &}
- €08 A [cos k cos ¢ sin A, - (sin k cos w + cos k sin ¢ sin w) cos A,]
(229)
3
—5%23 = cos $; [-cos Kk cos ¢ cos Ay - (sin kK cos w + cos k sin ¢ sin w) sin Ag]
+ (cos k sin ¢ cos w - sin k sin w) sin &, (230)
dmy; _
s =0 (231)
am
32 =
T2 =0 (232)
dm
033 =
Y 0 (233)
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{- [cos Kk cos @ cos Ay + (sin k cos wj + cos « sin ¢ sin wj) sin Ay]sin &

+ (sin « sin wj - cos « sin ¢ cos wj) cos &} a(cos 1))/28

+ {-cos k cos ¢ sin Ay + (sin « cos wj + cos k sin ¢ sin wj) cos Ag} >
9 (sinAy/38

+ {-cos X, [cos k cos ¢ cos Ay + (sin k cos wj + cos k sin ¢ sin wj)
sin Aq]} * 2 (sin &,)/29

+ [cos Xg (sin k sin wj - cos « sin ¢ cos wj)] 8 (cos ®,)/38

+ {-cos 2, [cos k cos ¢ sin ®; + sin A,

(sin k cos wj + cos k sin ¢ sin w]-)]} x 3 (cos A,)/aQ

+ {-cos Ay [(sin k cos wj + cos k sin ¢ sin wj)]

sin ®, - sin A, cos @ cos k} x 3 (sin Ay)/88 (234)

{cos k cos ¢ sin Ay - (sin k cos wj + COS K sin ¢ sin wj) cos Ao} X

3 (cos Ay)/38Q

+ {-[cos k cos ¢ cos Ay + (sin Kk cos wj + cos K sin ¢ sin wj) sin A
sin @, +(sin k sin wj - cos k sin @ cos wj) cos o} 8 (sin 19)/28
+{-sin A [cos k cos ¢ cos Ay + (sin k cos wj + cos k sin ¢ sin wj)
sin Ay]} x 3 (sin &7)/22 + {sin A, (sin « sin wj - cos & sin ¢ cos wj)}
3 (cos &,)/aQ |

+{-sin Ao cos k cos ¢ sin ®y - cos A, (sin k cos wj + cos k sin @ sin-wj)}
x 3 (cos Ag)/3% + {-sin X sin &, (sin k cos wj + cos k sin ¢ sin wj)

+ cos Xy cos k cos ¢} 8 (sin Ay)/a8 (235)

[cos k cos @ cos Ay + (sink cos wj + cos k sin ¢ sin wj) sin A,)

3 (cos ®,)/a8
+ [sink sin wj - cos k sin ¢ cos wj] 8 (sin ,)/2Q + [sink cos w;
+ cos k sin ¢ sin w; cos ®y * 2 (sin A)/22 + [cos k cos @ cos &)

3 (cos Ay) /38 (236)

~ ey AT ST
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9%'*’-‘-={(cosx sin wj + sin k sin @ cos wj) cos &, + [sin x cos ¢ cos A,

- (cos k cos wj - sin k sin ¢ sin wj) sin Ag] sin &} 3 (cos Ay)/3Q
+ [sin k cos @ sin Aq + (cos k cos wj - sin « sin ¢ sin wj) cos A,]
3 (sin Ay)/3Q

+ {cos Ao [sin K cOS @ cOS A, - (cos k cos wj - sin x sin ¢ sin wj)
sin A,J} 3 (sin ®,)/39 + {cos A, [sin k cos ¢ sin &)

+ sin X (cos k cos wj - sin « sin ¢ sin wj)} 3 (cos Ay /89

+ [sin Ay sin k cos ¢ - cos A, (cos k cos wj - sin« sin ¢ sin wj)
sin ®,] 3 (sin A,) /38

+ cos X (cos k sin wj + sink sin ¢ cos wj) 3 (cos ®y) /88 (237)

—&% = {(cos « sin wj + sink sin ¢ cos wj) cos ®, + [sink cos ¢ cos A,

- (cos  cos wj - sin « sin w; sin @) sin Ay] sin @} 8 (sin 2)/2Q

- [sin k cos ¢ sin Ay + (cos « cos w; - sink sin ¢ sinwj) cosAyJo(cos Ag)/a0

]

+ [sin A, (cos « sin wj + sin k sin ¢ cos wj)] 3 (cos ®,)/aQ

+ sin Ay [sin k cos ¢ cos A, - (cos k cos w - sink sin w sin @' sin A,]
3 (sin ®,)/8Q + [sin A, sin k cos ¢ sin &, - cos A,
(cos k cos w; - sin & sin ¢ sin w;)] 3 (cos A,)/2Q

- [sin A, (cos « cos w; - sin k sin wj sin ©) sin @,

+ cos Aq sin k cos @] 8 (sin A,)/aQ (238)

am . . ; : .
—ahu=[(cos k cos wj - sSin « sin © sin wj) sin Ay - sin k cos © cos A)

3 (cos ®,)/3Q + [cos k sin wj + sin k sin @ cos wj] 3 (sin ®,)/38

- [cos &, sin k cos @] 3 (cos Ay)/32 + [(cos k cos w;

- sin K sin ¢ sin w;) cos &,] 8 (sin A,/08 (239

] B13
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%nfl = [cos ¢ cos wj cos & - (sin ¢ cos A, - cos ¢ sin w; sin Ag) sin &)

dmgy _
FXY)

9mgy _
YY)

]
3 (cos 1,'/8Q - [sin ¢ sin Ay + cos ¢ sin wj cos Ag] @ (sin A,)/3Q
+ [cos Ay cos ¢ cos wj] 3 (cos &,)/3Q - {cos %, [sin ¢ cos A,
- cos ¢ sin wj sin Aol} @ (sin €,)/39 - [sin A, cos ¢ sin wj
+ sin ¢ cos Aq sin ®,] 3 (cos Ay)/3Q + [cos Ay cos ¢ sin wj sin &,

- sin A sin @] @ (sin A,)/3% (240)

[sin ¢ sin Ay + cos ¢ sin wj cos A,) 2 (cos A,)/38

+ {cos ¢ cos wj cos ®, - [sin ¢ cos Ay - cos ¢ sin w;j sin A,)] sin @}
3 (sin 24)/88 + [sin A, cos ¢ cos wj] 3 (cos ®,)/38

- [sin 2y (sin ¢ cos Ay - cos ¢ sin wj sin Ay)] 8 (sin &,)/38

+ [cos Ay cos ¢ sin wj - sin Aq sin ¢ sin &,] 3 (cos A()/20

+ [sin A, cos ¢ sin w; sin ®y + cos A, sin @)] 3 (sin A,'/39 (241)

[(sin ¢ cos A, - cos ¢ sin wj sin Ay)] 8 (cos &,)/39

+ [cos ¢ cos wj] 8 (sin €,'/3Q + [sin @ cos ©,] 3 (cos Ay)/aQ

- [cos ¢ sin wj cos ;] 8 (sin A()/8Q (242)
3 (cosng) _ Y axX oY
20 Xy Y g ~X3p (243)
3 (sinrg X (cosay) (244)
e Y a0
3 (cos ®y) sin &, tan &, [ 38X oY
aa RE X5o+ Y3 (245)
3 (sin &, 3 (cos &)
AL LI =2 Ty
S0 cot &g — (246)
B-14 .
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3 (cos Ag) _sinl X sin © + Y cos © a(coslo)]
50 =3 [sm(x-nh v 50

3 (sinA) _ sinA 2 (cos &)

38 cos® aQ
3 (cos A _ Y X Y
dw Zx’ + st"’;z dw X ow

9 (sinxy) X 23 (cos 2y

dw T Y dw
3 (cos &) 1 axX aY 3Z
e "R sin ¢, tan &, xaw+Yaw Zcoséoa
3 (sind,) 1 3Z sind aX aY
L ekl At 2 = .20 =

™ 1‘.{{cos tbo R Xaw Y

3 (cos Ay _sinI(X sin 2 + Y cos ) _ 8 (cos 1)
dw - Y dw

2 (sinAy) _ sinAy 2 (cos &)

dw cos &, dw
3 (cos ) - Y D S
a1 XT+YD2 " a1 " T a1

8 (sind) X 3 (cos )y
a1 Y eI

3 (cos &) _

1 3xX Y z
i Eg{smtb tan ¢, [X——+Y ] Z cos $, BI}

3l a1

ol

)¢ R

91 a1

a(sintig):%{ q)?_z_sm%[gg Yg]}

fJ' Eadith

r}_ ‘,q’-:',‘ ‘;;::.“,__:” “HANDLE VIA -
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(247)

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)
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i 3 (cos o)
?——(—c—%)=coslcos (XO-Q)+smI(X sin © + Y cos @) —eae 0 (259)
a1 Y al
3 (sin Ay 1 ) . 3 (cos @0)] (
= - C—_— 260)
al cos &, >0 1+sin A, a1
3 (cos ny _ Y oX oY (261)
se  (XE+YOE [ 5e X% '56] 2
9 (sin 7&9) - E . a (COS XQ) (262)
de Y de
3 (cos &) _1 ). [ 2.9 _3_‘_1_'] ) 97
-—————-9-88 o7 isin @otan &g |X 72 + ¥ 2| - Z cos & (263)
3 (sin &) 1 3Z sin @ [ 98X
DL L L 29 22 _ = —
™ R {cos ® R [x 30 +Y::]} (264)
3 (cos Ag) _ oin 1 [X sin © + Y cos Q] 8 (cos Ay (265)
de Y de
3 (Sin AQ) - - sin AQ . 0 (COS @Q) (266)
de cos & de
3 (cos Ay Y [ axX aY
o _ 98 ¢ X (267)
an Ty ¥ an X 817] 26
8 (sinx) X2 (cosa (268)
an Y an
3 (cos @9) 1 X Y 9Z
P | LA, 3 e -3 -~
T Ey{sm &, tan &, [X 5 +Y 377} Z cos &, 51 } (269)
3 (sin ) 1 3Z sin @ ax aY
osmn®y 1} 25 82 sindy | 9X X
P R {cos ‘I"’an = [xan + Y anJ (270)
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8 (cos Ay) _ sin T [X sin @ + Y cos £2] 3 (cos Ay (271)

an Y an
3 (sinA) _ _sinAp 2 (cos &) (272)
an cos @0 an
3 (cos Ag) _ Y 3X ﬂ}
cos M) _ o L [Ya‘r x X (273)
8 (sinx) _ _X 2(cosny (274)
a7 Y ot
3(cosdy) 11§ X 3Y 2%
—a-;-—_-0-=ﬁ{smd>otan éo[x—-+Y ] - Z cos 4’0'5'.,'.} (275)
3 (sin &) 1 2532 _sin® [ X oY
——ﬂaT =g §cos ® - R |X5r *Yar (276)
3 (cos Ap) - sin I [X sin © + Y cos 2] 3 (cos Ay (2717
T Y T
3 (sinA) _ _sinA, 2 (cos &) - (278)

oT cos & aT

Now prepared to form the partial derivations of F,;, F, with respect to the orbital
elements. For any element £, may write

3F, _Lf[ﬂj_g?l’]

3t W |3t Wat (279)
and

aF, _+fl3V V W

i w[ag - ag] . (280)

16P Sebrzig
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which became

aF, _+f dm;; Uam am;; U 2m
_El_ {(xl )[ 11 31] (Y Y")[ag wT&n]

3E W 9E "W ot
dmyz U 3dm X
“ (2 - 20 [as” v [ - m) B
aZ
+ [W mj, m12] % * [W mg, mw] 3_50} (281)
and
9F +f am V dm adm Vom
=2 _ = 21 - 31 22 a2
. .W{(x1 X")[ag Lo ] (¥, - Yo)[ag . ag]
3 V 9m \' X
+ (Zi - Zy [-—-——-23;; 'W_nag ]+ [Wm31 mu] -529—
3Y, [V 3Z (282)
[ e - me] [ - me] 2
generalized to
3Fki _ M )ix. - [__kim - dmy, - dmys 8m32]
2t —W{(Xl Xo) T: Tyi 3t +(Yi Y, T: Tki T
o] 3
+(Z - Zo) [%3‘ Fk1 95%33‘] +(rk1 mgaq -mkl)_a-)é(-q

where TI'y; has been defined previously

Now all terms have been defined -~ coefficient matrices can now be formed.
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Appendix C
INVERSION OF LARGE MATRICES

1.0 INTRODUCTION

One of the stumbling blocks preventing the rapid adoption of analytical photo-
grammetry is the problem of solving a large system of linear equations, which is
intimately related to the problem of inverting a large matrix.

Consider a system of n linear equations relating n unknown quantities. Let
the system be represented as

AX =R (284)

where A signifies the coefficient matrix
R signifies the vector of constants
X signifies the vector of unknowns

Provided that the matrix A is not singular, the determination of the inverse matrix
A-!and of the individual unknownsx;, may be readily obtained in theory. However,
if A is a matrix of high order, a formidable amount of computing is required to
obtain the solution. In general, one requires not only a specific solution for the
vector X, but also a theoretical error analysis of the results. For this, it is
necessary to determine the inverse matrix A-l.

With the available high speed digital computers the problem is essentially one
concerning the storage requirements for the quantities involved in the computations,
the time taken to perform the calculations, and the precision of the results. This note
will be an attempt to determine the optimum procedure which will furnish the required
solution for X and for A~

The methods by which the inverse of a matrix may be determined are defined as
direct if the inverse may be determined by a finite number of operations, and as
iterative if the inverse is determined as the limit of successive approximations. The
direct solutions do not yield an exact solution, on account of the accumulated round-
off errors. These errors may be considerable in the case of a large matrix. It will
be necessary to determine the accuracy of the determination of A-!, and to provide
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a method of correcting the calculated elements. In view of this, only the direct methods
of evaluating the inverse will be considered, and a method of correcting the inexact
solution will be given.

2.0 HOTELLING’S METHOD OF CORRECTING AN
APPROXIMATE INVERSE MATRIX

Let the approximate inverse of the matrix A be D°, and define

F°=1-AD° (285)
Note that if

D°= A"}
then

F°=0

Now consider the sequence of matrices

Dj = Dj-1 (I+ Fy.p) (286)
and

Fi= (I - ADy) (287)
where i=1,2,3,...,m
so that

Fm=1-ADp =Fi.1=Fh9=...=F20 (288)

Provided that the norm of F° is less than or equal to unity, the sequential determina -
tions of D, converges rapidly. This is based on the convergence theorems:

If a system of linear equations is written in the form X = AX° + B, the covergence
of the iterative solution for the vector X starting with an initial vector X° and with

any value of B is guaranteed if the proper numbers of the coefficient matrix A are
less than unity in modulus.

From this theorem it follows that:

In order for the iterative process to converge, it is sufficient that the norm of the
matrix A be less than unity.
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3.0 MATRIX INVERSION BY THE SINGLE
DIVISION SCHEME

This method is based on the theorem which states that if the leading submatrices
of the square matrix A are non-zero, then A may be factored into the produce of a
lower triangular matrix by an upper triangular matrix.

Consider the matrix A and the upper triangular matrix B and the lower
triangular matrix C, such that A = CB.

This matrix C may be formed by using the recurrence formula
j-1
cij = ajj - 2 (eqebyj) 12 J, cik = ajk (289)
k=1

and the matrix B by the recurrence formula
i-1

ajj - Z (Cikbkj)
=1
ajj

bjj = y i, big=1 (290)

Since A~! =B~ C~! then A~! C = B~}, in which B"! is an upper triangular matrix with
1 along the leading diagonal. Similarly, BA~! = C-!, The equation for B~! furnishes
n(n+1)/2 equations of the form:

,

1

-1

iy @it + Cpy 2 ! -1
11 4§l 21 i2

+Caa, +s.o+C A =
31 %43 nl “in
1

-1

Crpajy + Cyp@jg+ ..+ C oy a'.u11=1
-1 -
Ca3 a13+. ..+Cn3 3111:1 4 (291)
—1_
Cnn &4 = 1 )

i=1...n

Similarly, the equation for C~! furnishes n(n-1)/2 equations of the form:

TATENTRKEYHOME
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1j 12 72 13 3 iIn n
1 -1 -1
a2 -o-b23 a3 e b2n nj

$ (292)

-1 -1 _
h-1,j ¢ b(n-l)n i 0 J
j=2...n

From these two sets of equations the required values of a}* are determined, by

putting i = n in Equation (291) and solving for a_! ... a-}, which are then substituted

. . =1 . nn
into Equation (292) to obtain a(;_q), for j =n.

A symmetric matrix S may be factored into two triangular matrices such that the
lower triangular matrix is the transpose of the upper triangular matrix, i.e.,

s =DID (293)
Then
st-ptpl-l (294)

According to Equation (290

i-1
Sij - 2 (d ;)

k=1 .

dyj = an i<] (295)

noting that

i-1

aj; = Syj - (dy;)? (296)
k=1




Let D = ¢B, such that

ey T S 4 ... 4]
Y11 Pn P11
D= 02 | 1% 9n (297)
V2 P
i “nn] | 1

The elements of D! = d{j1 are

d'i]!=0fori>j (298)
- 1 1
d.-i S — = — (299)
B dy
n
di']-1 = Z b d{q’ for j =k (300)
k=i+1

4.0 PARTITIONING METHOD
Let the square matrix S, (# 0), be partitioned according to the following scheme:

(D | 7
A b B
p
S = _L ! (p+q=np=>q
i C q l D ]
t
and let the inverse S~! be partitioned correspondingly according to
K L
st =
M N

Since S.S7! =1 the following relations are evident:

v hin s = Lt Ve
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Set 1

N = (D-CA™' B)
- -1

M=(-NCA™Y) | (301)

L=(-A-1BN

K=(A"1-A"1'B M)J

Set I
1\
=(A-BD™! C)
— -1 )
L=(kBD™ » (302)
M=(D1CcK
N =D-!-D-!cCL
P

The solution involves the inversion of one p X p matrix and one q X q matrix;
various matrix multiplications.

5.0 BORDERING TECHNIQUE

This is based on the partitioning of 2 n X n matrix A, into a (n-1) x (n-1)
matrix Ap.1 whose inverse is known, a row matrix r, a column matrix c, and a
single element, a,,, according to the following scheme.

[ ;au
An-1 I [An-1 l¢n ]
Ap = i = : | (303)
|
Ian -1.n |
E ARt i I iy
L i L ; |
The correspondingly partitioned inverse is
I
APp.y i Sn
-1 :
An il B I L (304)
an : 1/ay

s Via o "
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Since

1 0
AA™l=
0 1
then
-A-1 1 c
n-1%n
Sp= ——— (305)
n
@p =app - 'n Ap-1 Cn (306)
Pp-1 = A;:—l -A;:-l ¢y dn (307)
-rp AL
qq = —2-n-1 (308)
Qn
so that _ -
-1 -1 -1
ALy Ap-1cpThApa ) Ap-1Cn
-1 on ’ an
AT = | (309)
A
Tn &n-1 1
L e ey

The inverse of the matrix is thus obtained by successive borderings, through the
successive inversions of the sequence:

A1 5 |3y A, (3 3y Ay

a1 Ay Q1 A Q3| 4 ..
33 a3 Ay
Each step of this determination is carried out according to Equation (304).

In the event that the matrix to be inverted is symmetric, the bordering technique
becomes much simpler.
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Since the ith row of the matrix is identical with the ith column, the corrective
terms

Aj1 cp-1 Tp-1 An-1
Qn

which are applied to A,’,‘_l may be determined element by element as
1 nﬁl [ ]
Ay = — ajp ccl aj
T ig L

where TT denotes a product over the range of ¢ from the rows of the matrix A;ll_l.

Similarly @ is determined according to ay = ap, - ¢p_y ALl ¢, _q, which
is obtained from the rows of the matrix A7l ;.

6.0 COMPARISON OF METHODS

Since the matrix which will be inverted is symmetric the preceding techniques will
be somewhat simplified.

6.1 Single Division

It appears as if the single division scheme for S = DTD will yield the highest
accuracy, since this method tends to make the leading diagonal of D closer to unity.

For this method, the storage for n(n-1)/2 elements must be provided, since the
determination of the elements of the Kth row of D-! utilizes all the elements of the
rows £ = k which have already been determined. This disadvantage may be offset
by suitable partitioning, but appears to become cumbersome.

Furthermore, the required inverse A~! is not obtained until D-! is post-multiplied
by its transpose.

6.2 Partitioning

This has the advantage that it enables a matrix of any size to be inverted, provided
that suitable partitioning has been performed. However, it is apparent that this
becomes rather cumbersome, and is not recommended unless a large number of zero
or unit partitions exist.

6.3 Bordering

It has been shown that the bordering technique for a schematic matrix may be
obtained by the successive evaluation of algebraic expressions. These yield the
elements of the inverse row by row, and computations are performed using rows
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of the previously determined inverse one at a time. Provided that these rows are out-
put onto tape (and read back as required) a maximum of (3n + 2) storage locations is
required for the computations.

However, the method is more time consuming than the single division scheme.

6.4 Conclusion

It appears that the bordering technique is the most appropriate method to use,
on account of the simpler programming and storage requirements,

The determination of A A-! and correcting of A~! by Hotelling’s method will
probably have to be accomplished through a partitioning procedure. However, it is
felt that it should be necessary to make only one iteration to obtain A~! with
sufficient accuracy.

In the event that a large number of iterations is necessary, the convergence
may be improved by the methods described in Faddeeva Ch. 30.
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