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PREFACE

The objective of the Geodetic Orbital Photographic Satellite System (GOPSS) is to accurately
determine the location of landmarks widely distributed over the earth’s surface and provide better
information concerning the geophysical parameters which affect this system and other systems
operating at similar altitudes. The means chosen to accomplish this objective is to orbit a series
of data acquisition systems supported by ground-based instrumentation, The data gathered by
this system is incorporated into a sophisticated data reduction scheme which determines the
geodynamic parameters and landmark locations,

Detailed studies were conducted to determine the feasibility of the GOPSS. The study period
was designated as Phase I, and the results of these studies have been compiled into five volumes
for reader convenience.

This volume considers the photogrammetric data subject to constraints imposed by orbital
and auxiliary data, the mapping capabilities of the system, and ground handling of mission
photography.

The division of the remaining volumes and their content are now briefly described for
information and reference purposes.

Volume 1, Program Compendium and Conclusions, was prepared to provide briefly the details
essential to a comprehensive understanding of the effort conducted during Phase I of the GOPSS
feasibility study. System concept and objectives are described plus conclusions which concern
the attainment or modification of the initial objectives, along with recommendations for a system
configuration and a solution of the attendant data handling problems.

Volume 2, Data Collection Systems, describes the effort for implementation of the data

* acquisition requirements for the GOPSS program. This volume presents the preliminary design
which defines and describes the various sensors, considers their functional interdependencies,
and shows their evolvement into an integrated GOPSS,

Volume 4, Data Processing, Part 2, discusses orbital considerations affecting the feasibility
of the GOPSS. Physical models and computational procedures are reviewed and error studies
involving typical sensors and model inaccuracies are described. Based on these studies, recom-
mendations are made for tracking networks, auxiliary on-board sensors, and detailed orbit plans.
In addition, the data reduction procedure, whereby the acquired data are simultaneously located
to yield geodynamic parameters and landmark locations is considered.

Volume 5, Phase II-V Program Plan, describes the planning activity as it has been
programmed through Phases II to V for the engineering, fabrication, and operational support
for the delivery of five systems, Continuing studies which are required are also defined in this
volume,

xi
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SUMMARY

The basic objective of the photogrammetric study was to evaluate the accuracy of positioning
landmarks, well distributed over the earth’s surface, with respect to a World Geodetic System.
In order to accomplish that objective, prerequisite studies were conducted which showed:

1. Measured photographic data can be corrected for systematic errors, such that the residual
errors in the corrected measurements due to calibration, film distortion, etc., are maintained to
a maximum value of +4 microns at the 1-sigma level. This fact is predicated on the use of a pre-
scribed 12-inch {ocal length lens, and the lens design and its performance characteristics that
were generated during the program.

2. That the optimum reseau spacing, assisting the suppression of these errors to the
+4-micron level is 1 centimeter.

3. That the accuracy can be evaluated with which the camera exposure stations may be
photogrammetrically determined with respect to the centroid of five landmarks imaged on three
adjacent frames.

A theoretical photogrammetric analysis in which the mathematical model for the numerical
evaluation of the photographic subsystem is developed. The accuracy with which landmarks can
be determined from the reduced photographic data is considered in two segments.

1. The first of these evaluates the accuracy with which landmarks can be determined with
respect to the orbit over unknown areas. It is concluded that landmark errors in the order of
239 feet cross-track, 42 feet in-track can be obtained and that the inclusion of a radar altimeter
in GOPSS will reduce elevation errors to the order of +42 feet when operating at an altitude of
160 nautical miles.

2. The second segment deals with the accuracy of extending geodetic control from known
areas by the method of aerial triangulation. It is concluded that the maximum length of such
triangulations that ensure the elevation errors are less than +40 feet is 640 nautical miles for
a vehicle altitude of 160 nautical miles.

The ground handling of the recovered mission photography is discussed, and concludes that
the handling of these records presents no serious difficulty with existing equipment.

The final consideration is that of utilizing the GOPSS photography as a mapping medium. It
is concluded that for medium scale maps, in the order of 1:200,000, that the criteria for Class A
maps can be met. In order that large scale maps, of 1:100,000 scale or better, can be produced
conststent with the mapping criteria, supplemental data must be provided to reduce the elevation
errors and to increase the relative accuracies.

xiii
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3.1 INTRODUCTION

The mission of the Geodetic Orbital Photographic Satellite System (GOPSS) involves the
location of landmarks over the earth’s surface to high accuracies from data collected by an
orbiting vehicle and the simultaneous accurate evaluation of the geodynamic parameters which
influence the motion of the orbiting vehicle. The principal data gathering system for landmark
location is photogrammetric, and consists of a set of cameras, one to photograph the earth’s
surface and two stellar cameras to define orientations. Orbit position is defined by typical
tracking networks, re-enforced by selective photogrammetric data. Accurate time in orbit is
recorded and auxiliary onboard sensors may be employed.

The GOPSS program might be treated as two independent calculating schemes. The first
is the utilization of tracking data as the prime input to determine the orbit; the second is the use
of this orbit to position the camera stations from which the location of ground points is obtained.
In this positioning task, the camera is considered as the prime sensor, so that the production of
a landmark catalog is approached as if it were a photogrammetric problem alone.

This leads to an approach which treats each of the data types according to independent data
reduction schemes and can become involved, since functional relationships exist between the
various types of data despite the fact that they are independently acquired. For example, ground
tracking data provide the most accurate information for the determination of orbital parameters,
yet these parameters can be weakly determined from the photogrammetrie solution. The inde-
pendent reduction of ground tracking data and photographic records is theoretically unsound,
since these two sets should be consistent with each other through on common factors, namely,
the orbital parameters.

Investigating the feasibility of the GOPSS concept using an integrated treatment as described
in Volume 4, Section 4.12 requires the complete data reduction scheme that will be necessary to
finally reduce the data from the GOPSS. Only partially integrated analyses can be performed in
this study. H, by proceeding in this manner, it is conciuded that meeting the specification is
feasible, then the final data reduction involving complete integration would more strongly
re-enforce this conclusion.

In the past, multidata systems have been considered as being composed of a prime sensor
that fulfills the basic system objective, and various auxiliary sensors that support and complement
the prime sensor. The role assigned to the so-called auxiliary systems has been to provide
supplemental information and facilitate the data reduction problem. Nowadays, auxiliary data
systems frequently provide better quality and a greater quantity of data than that furnished by the
prime sensor. This has led to a revision in the concepts of auxiliary data utilization, such that
all related data are used to perform an integrated and simultaneous adjustment to obtain consis-
tent results in achieving the system objectives.
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This section of the report is directed toward evaluating the photogrammetric accuracies that
can be attained as well as furnishing realistic estimates of the expected input errors to the orbital
computations. It is recognized that providing these error estimates implies that the reduction of
photogrammetric and orbit tracking data are independently performed. This conflicts with the
preceding comments, but is necessitated by the structural organization of this phase of the study.
The recommended data reduction scheme, however, will not consist of independent computational
schemes, since the combined data acquisition capability of the system provides for a great amount
of over-determination of the desired information, even for small orbital segments, so that a con-
strained adjustment will be mandatory to achieve optimum results.

As previously stated, the GOPSS program can be treated as utilizing tracking data to deter-
mine the orbit, and using this orbit to position the camera stations from which the location of
ground points are obtained. However, since the camera stations lie on the orbit, inconsistencies
will result unless the photogrammetric data are used with the other data in determining the
orbital parameters. In this regard, and provided that a sufficiency of ground control points exists,
the photographic records furnish a means of determining discrete orbital positions. These
positions must conform to those that can be interpolated from an alternate orbit determination.
and thus a condition is imposed on the data adjustment. The whole purpose of this adjustment is
to eliminate the discrepancies that would otherwise exist, so that no matter whether one deter-
mines camera positions photogrammetrically or by using orbital positions, the same location
results. The same holds true for landraark determination—after adjustment, the coordinates of
such points should be the same, whether resulting from a long photogrammetric strip triangulation
or compiled from two exposures whose locations have been orbitally determined.

In this portion of the analysis, the camera positioning and landmark location requirements will
be treated as a photogrammetric problem, subject to functional restraints and constrained to
various auxiliary and orbittrackingdata. This assigns the photogrammetric subsystem the primary
role. However, this is only a specific aspect of the overall data reduction scheme, and, provided
that the correct functional relationships are enforced, it is irrelevant. In other words, the same
data could be equally viewed as an orbit determination in which the photogrammetric data are a
minor set of tracking information.

The use of auxiliary data as an integral part of the photogrammetric reduction is one of the
strengths of the GOPSS. Individual photogrammetric models possess a reasonable geometric
strength. The conjunction of successive models, however, to form a triangulated strip, is subject
to an unfavorable error propagation. It is this fact which precludes the attainment of the objectives
through photogrammetric techniques alone, These techniques do not have the strength to extend
positional control into uncontrolied areas even with such a highly sophisticated camera as this, but
must depend on a stable and well-defined orbit determined by other sensors. Additional data,
acquired by other sensors, when incorporated into the triangulation with the correct functional
constraints suppress the error accumulation to a surprisingly small minimum.

The other considerations in this study consists of a sequence of single and multimodel
triangulations. Although it might appear as if this were the whole concern of this study, this is
far from the truth. Essentially, the triangulations are performed to determine whether certain
system objectives can be achieved, and to demonstrate that the proper use of auxiliary data
enables these objectives to be surpassed. Since these triangulations require ground control data
in the initial model as a minimum, some consideration of the quality of these points is necessary.
The basic assumption has been that the location errors of control points i.e., photo-identifiable
ground points whose positions are known, are uncorrelated, and equal to a spherical error of
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+10 meters. This is a typical internal error value that could be encountered in existing high
quality geodetic nets. The specific problem of the errors between distinct geodetic systems
necessitates that a datum shift for each geodetic net be incorporated into the data reduction
scheme. In general, such shifts with respect to a world geodetic system might be expected to
be as much as 50 meters. Although the determination of these shifts is the basic objective of
the DOD satellite triangulation program (PAGEOS), it is also an Incidental accomplishment of
the GOPSS program. These aspects are discussed in some detail in this volume and in
Volume 4.

3.1.1 Photogrammetric Study Objectives

The basic objective of this photogrammetric study was to evaluate the accuracy of position-
ing landmarks, well distributed over the earth’s surface, with respect to a World Geodetic System.

In order to accomplish this objective, various prerequisite studies were conducted, which
permitted the evaluation of some intermediate objectives. These studies showed:

1. That the measured photographic data can be corrected for systematic errors, such that
the residual errors in the corrected measurements due to calibration, film distortion, etc., are
maintained to a maximum value of x4 microns at the 1-sigma level. This is predicated on the
use of a prescribed 12-inch focal length lens, and the lens design and its performance character-
istics that were generated during the program.

2. That the optimum reseau spacing, assisting the suppression of these errors to the
+4-micron level should be determined.

3. That the accuracy can be evaluated with which the camera exposure stations may be photo-
grammetrically determined with respect to the centroid of five landmarks imaged on three adjacent
frames.

Before discussing the specific analyses, a general description of the overall study is given
below.

3.1.2 Photogrammetric Study Description

Section 3.2 consists of an examination of the systematic errors affecting the recorded and
extracted photographic data, and the corrections necessary for their removal from the measured
coordinates. Since it is frequently not possible to exactly define the systematic errors and their
corrections, residual errors are expected to exist in the refined coordinates. These residual
errors are the basic inaccuracies present in the photogrammetric data input into the computa-
tional schemes.

The most significant of the systematic errors, mechanical film distortions, can be reduced
by the use of 2 reseau. The reseau spacing necessary to suppress the effects of the residual
errors to a specified tolerance is described in Section 3.6.

Section 3.3 consists of a theoretical photogrammetric analysis in which the mathematical
model for the numerical evaluation of the photographic subsystem is developed. This analysis
is directed toward the overall data reduction scheme in which auxiliary data, prime orbital data,
etc., are simultaneously incorporated.

These two portions of the study were accomplished through an extensive literature search,
discussions with several of the authors, and a certain amount of original work.




Section 3.4 consists of a sequence of numerical analyses, utilizing the model developed in the
second phase. Basically, the photographs were either statistically constrained to discrete orbital
positions, or functionally constrained to orbital positions and utilized stellar orientations.

The numerical analyses that were performed established the following design parameters and
attainable accuracies:

1. The optimum overlap between successive photographs, with the incidental determination
of the effects of varying the weights assigned to the measured photocoordinates
{Section 3.4.1.1)

2. The effects of decreasing the length of the format on the attainable photogrammetric
accuracy (Section 3.4.1.2)

3. The determination of the accuracy of locating camera positions with respect to the centroid
of five landmarks imaged on three adjacent frames with the incidental determinations of
the effects of varying the orbital covariance matrix (Section 3.4.2)

4. The attainable aceuracy of strip triangulations, as bridges and extensions, assuming
ground control data (Section 3.4.3)

5. The attainable accuracy of positioning landmarks from orbitally constrained photography,
with no ground control (Section 3.4.1.1, Table 3-11).

The last three sets of numerical studies were repeated at three different altitudes, namely,
at 120, 160, and 200 nautical miles, in order that the effects of increasing the altitude on the
system performance could be evaluated.




3.2 RESIDUAL DATA EXTRACTION ERRORS

This section is concerned with examining the fundamental accuracy with which data extracted
from the photographic records can be refined through the removal of systematic errors.

The inaccuracy of these refined data is due in part to an inadequate knowledge or expression
of the systematic errors and in part to the presence of random errors inherent in the extracted

data.

This section considers the various systematic errors and provides estimates of the magnitudes
of the residuals errors in the refined data. These estimates lead to the imposition of various
conditions on the data extraction equipment, and the refining processes in order that measuring
tolerances can be met.

A preliminary objective states that the reduced photo coordinates should be accurate to a
1-sigma level no greater than 4 microns. This is a total error that results from a combination
of all the individual contributing errors. For this study, a linear error model is used, such that
the residual error, oj, at any point, i, is expressed as

o; = = a.glj |k

where the summation is over j, of the contributing errors at the point i.

The basis for selecting the linear model is based on the hypothesis that the individual errors
are independent, and that the residual systematic errors are randomly distributed.

The various contributing residual errors, oj, are tabulated

o; = residual film distortion error

o, = residual refraction error

o3 = residual camera calibration error

o, = residual aberration error

oy = residual mensuration error

o¢ = residual comparator calibration error

Each of these component errors is now individually considered.

3.2.1 Residual Film Distortion Errors

Perhaps the most serious problem involved in the reduction of photogrammetric measure-
ments is the adequate removal of systematic film distortions. The usual methods of compensating
for these distortions involve the use of either calibrated fiducial markers or a reseau, the images
of which are recorded on the photography at the time of exposure.




Film distortions existing in photography cause image points to be displaced from instanta-
neously imaged locations. These displacements are primarily a function of the inherent charac-
teristics of the film base, and of the developing procedures. Some of the distortions occur as
a result of tensile forces applied to the imperfectly elastic roll film during its transport in the
camera and in the developing and drying equipment. Other permanent distortions occur as a
result of the manner in which the film is handled, developed, and dried. They are primarily
caused by the release of stresses in the dry film and emulsion during development and by the
compressive forces acting on and between the emulsion and film base during drying. Irregular
random distortions are also present, the magnitudes of which determine a noise level or thres-
hold, beyond which the application of adjustment procedures to measure photographic images is
pointless.

3.2.1.1 Permanent Film Distortions

The original negatives are considered to have a format size of 9 by 18 inches. The film used
is assumed to be an Estar base, 0.0025 inch thick, with a type SO-130 emulsion.

The high stiffness and low flow of the Estar base resist the tensile forces of the camera
and processing equipment. Furthermore, the backing of the film causes the unbalance of forces
during drying to be very small, so that the elastic compression is frozen in the film. The
dimensional changes that can be expected as a result of processing may amount to 0.05 percent and
those due to aging may be ignored.

For the selected format, this would cause total shrinkages as large as 228 microns in length
and 114 microns in width. In the event that copy positives used in the measuring apparatus are
made on a thick (0.007 inch) Estar base, which has a shrinkage factor of 0.02 pereent, anadditional
shrinkage of 92 microns in length and of 46 microns in width will be present. Since these are
systematic deformations, they are additive.

3.2.1.2 Nonpermanent Film Distortions

The most important factors causing these temporal variations are changes in the temperature
and relative humidity of the film’s environment. Although Estar base films possess excellent
physical characteristics, only very small changes in temperature and humidity can be neglected.
The coefficient of linear thermal expansion is 15 x 10~%°F, and that of linear hygroscopic
expansion is 35 x 10-%1 percent relative humidity. Thus, temperature changes of 1 °F during
the measuring period will cause a dimensional change of approximately 6 microns over an 18-inch
length of film. The corresponding dimensional change for a 1 percent increase in humidity will
be approximately 17 microns. Provided that the absolute humidity remains constant, these changes
will tend to compensate each other, although the hysteresis of the film expansion with humidity
may negate this compensation.

In addition to the dimensional changes induced by changes in the whole environment, local
temperature and humidity variations may occur when the film is being measured. These are
primarily due to the effect of concentrated light on that portion of the film which is being viewed
and the heating effect of other electrical machine components. These local distortions may be
difficult to detect and remove from the measurements.

It is often difficult to determine whether image displacements are caused by film distortion
or by some other factor unrelated to the dimensional stability of film. Perhaps the most signifi-
cant source of such displacements is lack of flatness in the camera (partially compensated for by
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using a reseau register glass in the focal plane of the camera). It appears to be impossible to
separate the errors caused by this source from those caused by dimensional changes. Further-
more, lack of film flatmess in reproduction and measuring equipment may occur unless very
careful precautions are taken. Environmental conditions must be rigorously stabilized during
the processing and measurement of film if accurate results are to be obtained. According to
Michener, these environmental conditions should be maintained in the postdevelopment storage
areas. The obvious solution would be to store the processed film in the same room that is used
for the measuring equipment. This would mean that it would be necessary to environmentally
control only one room. The environmental controls which is felt necessary to maintain in
order to minimize the effects of atmospheric temperature and humidity changes are listed in
Table 3-1.

The alternative to using original film or copy diapositives on a stable film base, is to make
reproductions on coated glass plates.

Glass plates are superior to film base in all respects involving stability. Although the former
are quite expensive when compared to a {ilm base, an economic advantage is obtained when using
glass since the cost of establishing the precise environmental controls for the storage and mensu-
ration of film is not invovled. Furthermore, by selecting the thinnest Grade I plates, substantial
savings may be made. It may be argued that the lower flatness tolerance of these plates negates
such an advantage. However, it should be noted that such plates are much flatter than a film base
can be, and that the lack of flatness is unimportant when using an orthogonal viewing instrument.

Glass plates are easv to handler and rigidly attach to the measuring and reproduction
machines. It is extremely difficult to secure film in such apparatus without applying tensile
or compressive forces to the film. Such forces produce distortions which may defy evaluation.

1t is therefore concluded that glass plates are to be preferred over a film base for use ina
precise phtogrammetric data reduction system. Copies of the original exposure should be made
onto glass plates, thereby “freezing” the distortions existing at that time onto a permanent record.
It has frequently been commented that the bulk of glass plates requires a large storage facility,
however, a 9-inch by 18-inch glass plate 1/4 inch thick displaces a volume of 40.5 cubic inches.
For 15,000 glass plates, this displacement to 351.5 cubic feet. Assuming that an equal volume
is required for the crating and separation of these plates, a storage area of 700 cubic feet is
required. This is not a significantly large storage requirement.

3.2.1.3 Calibration Marks

Normally, survey cameras are provided with four fiducial markers. These are located at
either the four corners or at the midpoint of each side of the format. By comparing the measured
distances between the marker images with their calibrated values, the effect of the systematic
film distortion can be reduced to the extent that the standard residual error is about 20 microns
{Tewinkel, 1960) to 15 microns (Laurila, 1961) for acetate base films. In the event that a stable
Estar base {ilm is used, the standard residual error is reduced to about 5 microns (Tewinkel,
1961; Adelstein, 1962).

A significiant improvement in the compensation for systematic film distortion may be obtained
if the survey camera is provided with additional calibrated markers. According to Tewinkel,
1961 and 1962, the use of eight markers, located at the four corners and at the midpoint of each
side of the format, forces the discrepancies into smaller bounds so that the standard residual
error is decreased by about one half (2!, microns). K a central mark is included, the effect
of the nine marks is to reduce the standard residual error by one guarter (1.25 microns).
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Table 3-1 — Recommended Environment Controls

Environment* Temperature, °F Humidity, percent
Pre-exposure 0= 2 50+ 5
Development 70+ 1to 2 —~

Drying 70z 1to 2 50 + 2
Storage 70 2 50+ 5
Measuringt 70+ 1to2 50 + 1

*All environments are assumed to be dust free.

11If storage and measuring environments are difficult, ensure
that the film is presoaked in the measuring environment for
at least 24 hours. This should then be followed by a 4-hour
instrumental soak period.




Substantial analyses by Brock and Faulds, Gimrada, et al., indicate that residual film distor-
tion cannot be expected to be less than 1 to 2 microns. With the exception of some of the Gimrada
studies, these analyses pertain to 9- x 9-inch format. Extrapolation to a 9- * 1B-inch format is
valid, provided that 12 fiducial marks and 3 central marks are imaged onto the film.

To ensure that a precise determination of the systematic film shrinkage is obtained, a
calibrated reseau plate which is imaged on the negative at the instant of exposure will be used.
1t is pointed out that two different philosophies concerning the use of a reseau exist.

The first of these, implied by the preceding comments, is to use measures of the reseau
point to determine an analytical expression for the systematic distortions. Since this may be
adequately determined by an B- to 10-parameter equation, a dense reseau spacing is unnecessary.

On the other hand, reseau marks may be considered {0 have their calibrated “exact” values
and coordinates of image points determined by measuring and adjusting the incremental differences
from surrounding reseau points. To prevent measuring and interpolating over long distances, a
reseau spacing of 1 centimeter is recommended,

3.2,.1.4 Recommendations

It is recommended that a reseau plate having a maximum density of 1 centimeter be used,
s0 residual errors in the order of 1 to 2 microns are to be expected. The specific reseau
technique to be used will be determined with regard to instrument and data reduction
characteristics.

3.2.2 Residual Refraction Errors

The displacement of image rays due to atmospheric refraction may be corrected by applying
various well known expressions. Owing to the dependency of most of the usual solutions on an
accurate determination of the central angle, 8, and of the astronomic refraction, ro, the strength
of these solutions is somewhat variable.

The geometric situation for photogrammetric refraction, Tp from a satellite-borne camera
is illustrated by Figure 3-1. With reference to Figure 3-1

rp=a-B

-1
where tan 8 = sin 8[1 + % cos 9]

in which
9=Z+ra- o
and
sinz=[1¢ﬂlsi“°'
R Hp

up being the index of refraction at the point P, which is appropriately determined from four term¢
of Garfinkel's model.




Fig. 3-1 -~ Geometry of atmospheric refraction



It is seen that the photogrammetric refraction is a function of six dependent variables a,
H, R, Z, rq, and gp. Errorsin these variables affect the accuracy of the photogrammetric
refraction. Photogrammetric refraction is relatively unaffected by errors in the satellite height,
the index of refraction, the zenith distance, and the radius of the earth. This has been discussed
by Case, who shows that the sensitivity of photogrammetric refraction to error in the nadir angle,
a, satellite height, H, earth radius, R, and index of refraction, up, is so small that it may be
considered negligible. However, the sensitivity to errors in astronomic refraction and in zenith
distance is extremely high and cannot be ignored. Case recommends the use of the flat earth
formula, thereby dispensing with the central angle, 8, which is simple to use but relatively
insensitive to errors in all the variables. His implication is that the difficulty lies with the small
central angle, 6.

Subsequent work by Schmid discusses the problem of refraction more extensively, and derives
the following formula

£ = 2.330 tan (180 - o - 8} p” - W
P H

where W is a meteorological correction factor. Schmid presents tabulated data indicating the
effects of completely neglecting the refraction problem, from which it is estimated that if the
refraction is considered, the maximum residual error will not exceed 0.4 arc second, i.e., 0.6
micron, for the camera under consideration.

3.2.3 Residual Camera Calibration Errors

Advanced camera calibration techniques exist today which utilize photography of control fields
made on glass plates and are capable of reducing the errors due to the distortions to the order of
1 to 2 microns. Such calibrations must necessarily be much more sophisticated than the usual
consideration of radial lens distortion, and include parameters that account for tangential distor-
tions, asymmetry of the distortions, lens decentering, etc. The most advanced of these calibra-
tions are those of D. Brown, and of the USCGS, due to H. Schmid. Both are similar, being based
on stellar photography, but differ in that Schmid’s method is somewhat more sophisticated (carry-
ing 23 parameters against Brown’s 18). Both authors commendably apply generalizedleast square
techniques in which appropriate weighting functions are applied to the input data, thereby enabling
statistically valid estimatés of error propagations tc be formed. These methods are well docu-
mented, and need not be detailed here.

It is of interest to note that these methods are photographic, following the recommended
practice of Commission I of the International Society of Photogrammetry. Since these recom-
mendations further state that it is desirable for calibrations to be performed under conditions
similar to the working environment of the camera system, it is perhaps worthwhile to consider
the possibility of inflight calibration of the airborne cameras. Although preflight calibrations will
be performed with the sytem, it is not unlikely that environmental conditions will affect the camera
performance in some unknown manner, which can be detected only through inflight calibrations,
(discussed in Volume 2). This calibration would require that the vehicle be rotated in such a
manner that the terrain and stellar cameras both point into star fields, and that during the expo-
sure time, the vehicles be in free flight. This can reasonably be accomplished during passage
through the earth’s shadow zone.

The great advantage of this inflight calibration is emphasized by the difficulties that exist in
determining the camera constants for a near vacuum, and for recognizing any temporary change
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in the relative orientation of the stellar and terrain cameras. The reduction of these calibrations
would be performed in the same manner as ground based calibrations. :

3.2.4 Residual Aberration Errors

Aberration is the image displacement caused by the (relative) motion of the camera system
during the time it takes for the image radiation to reach the recording medium from the receptor.

If the relative vehicle velocity is v, the angular deviation, A, due to aberration is

.q

A=—=sin#

(')

where C = velocity of light
¢ = angle between the image-object vector and the velocity vector

Since A is a small angle, the image displacement, A4, may be written as
A= Si A
where Sj = (x} + v + £1)'/2

This displacement is parallel to the velocity vector. For a tilted photograph this displacement
is reduced to

A'=Acost

provided the resultant tilt is not too large. For a primary rotation of w and a secondary rotation
o, one obtains t as

t = tan~! [(tan? w + sin® ©)''? (cos @)-!]

The resulting displacement of the images is resolved into the components parallel to the photo
axes through the swing angle x as

ix = A" cos k

by = &’ sin &

Since it has been assumed that tilts will be small, one may compute
sin 6 = (x] + y3)?/s;

with littie significant error, to obtain
& = vix} + y2)''? cos « cos t/C

and

by = vix} + y)'/? gin x sin t/C
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Maximizing, i.e., putting ¥ = t = 0, one obtains
ox = vix} + yP13/C
For a velocity of v = 7 kilometers/second, and C = 299,696 kilometers/second

ox ~ 0.234 (x} + y})'? x 1074

(! + yH)¥2 ~ 200 millimeters
then
ox ~ Su

This is a significant correction and should not be ignored. However, approximate values for all
parameters in this correction may be used without causing any significant residual error.

3.2.5 Residual Mensuration Errors

The mensuration equipment used in extracting data from the photographic records must
provide for a readout and least count of 1 micron and be calibrated by appropriate methods in
order to attain the ultimate accuracy. The calibration of analytical instruments has greatly
improved in recent years, as evidenced by the thoroughly documented techniques to be found in
the technical literature.

According to Rosenfield, the application of these calibration data reduces the average standard
error of the measured coordinates to + 1.0 micron, which is due to the mensuration equipment
alone. This agrees well with Gugel’s data, who, using Rosenfield’s technigque, obtains standard
errors in the order of 1.2 to 1.9 microns, and are not too different from those values determined
by Hallert (2.5 microns) and Brown ( 2.3 microns).

A more sophisticated modification of this technique has been made by the Itek Data Analysis
Center, which utilizes appropriate weighting techniques to obtain the variance-covariance matrix
of the corrective parameters and enables one to determine the weight matrix of the corrected
coordinates. The unit standard deviation of the reduced coordinates is in the order of 0.5 micron,
due to the propagation of the errors in the calibration data. This precision is partly illusionary,
since it is necessary to assign appropriate weighting functions to measured image coordinates in
order to determine the final precision. The basic criterion for these weighting functions is the
resolution.

Before discussing these functions, it is appropriate to comment on resolution.

Resolution when expressed in lines per millimeter, has frequently led to erroneous interpre-
tation. The typical test chart consists of a series of equally spaced uniform lines on a contrasting
background, in which the spaces between lines are equal to the line width. The minimum resolvable
distance is thus equal to the width of a line, or space. For a resolution of n lines per millimeter,
this means that (1/2 n) millimeters is the minimum resolvable distance. From a theoretical point,
it has been argued that the minimum resolvable distance is 1/(2n-1) millimeters, consisting of
n lines separated by n-1 spaces, but here it is elected to use the value 1/2n. In this respect,
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frequency spectra and transfer functions, although less easily understood, are less frequently
misinterpreted.

Applying the minimum resolvable distance to determine the dimensions of the minimum object
on the ground that can be imaged is not fully correct. This has been fully described by G. Brock,
who states:

“As the camera moves away from the object, the image on the negative first grows
smaller in accordance with the laws of geometrical optics, until its dimensions have
reached the critical value below which the taking system cannot deliver a reproduction.

As the distance between the camera and object is further increased, the size of the image
remains approximately the same, but its contrast against the surrounding background
diminishes. The distance at which a given object is still reproduced on the negative depends
primarily on the contrast of the object, although the contrast (v} of the negative material
also has a certain influence. In this extreme case of the reproduction mode, the shape of
the image produced is determined by the characteristics of the lens and is virtually
independent of the object of photography.”

The use of resolution as the criterion for weighting photographic coordinates is generally in
agreement with current photogrammetric practice and theory. Extensive experiments have been
made, and are still being made, to determine the most appropriate function of resolution to use,
Unfortunately, no concurrence of opinion as to the best function to use has been reached, essentially
due to the variation in contrast between the sets of experimental data and the absence of any
thorough theoretical study of this problem. It has been established by Schmid, Blachut, et al., that
well defined photo points and targeted stations can be measured with a precision that is in the
order of 1/10th of the minimum resclvable element. For high contrast point sources, for example
stellar plates, it is generally agreed that the pointing may be obtained with a precision approaching
1/20th the diameter of the image. However, as pointed out by Charman, no simple relationship
exists between resolution and the measuring error.

Gardiner’s data and his criterion are based on determining the absolute accuracy of mapping
from air photography, in which low contrast imagery and frequently iil-defined images are
characteristic.

His values include an inherent identification error that is always present in general mapping,
except when well defined points are being measured. Furthermore, this criterion is to be applied
to the mapping mode, a continual sequence of single pointings, not multiple independent pointings.

For reference purposes, the various weighting criteria have been listed in Table 3-2, with
an attempt to classify them according to image contrast.

From these tabulated data, it is possible to select a standard error that varies between
20.025/n to £ 0.34/n. In order that a reasonable weighting criterion might be used in the calcula-
tions, a value given by Ghosh (= 0.075/n) was selected.

3.2.6 Conclusions

Measured photographic coordinates are subject to two kinds of errors—systematic and
random. The systematic errors may be accounted for by applying the appropriate corrections




Table 3-2 — Standard Errors of Photo Measurements, as a Function

of Resolution (n) or Image Diameter (d)

Point
High contrast
(steller image)

Well defined photo
point (target)

Average contrast
natural photo points

Low contrast
photo points

Average photo
detail (mapping)

Standard Error
+0.025/n millimeter
(0.05 d)

0.05/n millimeter
(0.1 d)

0.04/n millimeter - 0.07/n
(0.08d - 0.14 d)

0.06/n - 0.2/n
0.166/n

0.34/n

Author

Eichorn

Schmid
Blachut

Ghosh
Hallert

Lyon, et al.

Charman
Gardiner




for instrumental calibration, film shrinkage, camera calibration, refraction, and aberration.
However, owing to the imperfect evaluation of these systematic errors, residual effects remain
after their application. These are presumed to be accidental in nature.

The mensuration error is random and functionally related to resolution. It is therefore
expedient to define a data extraction error that is random in nature and a combination of the
effects of resolution, residual image motion, and residual mensuration errors.

According to the preceding sections, the systematic errors may be eliminated to yield
residual accidental errors of the magnitudes shown in Table 3-3. To this total residual error
of + 2,7 microns, the residual extraction error, 0e, must be applied to yield the final expected
precision in the photographic coordinates. According to the system specifications that this
should be no greater than =4 microns, the magnitude of the error, g,, cannot attain a value greater
than = 2.9 microns. This value, 0g, i5 due to the image alone and is essentially a pointing and
identification error. The question that must now be answered is whether this is a value that
might reasonably be expected.

The tolerance can be met if one can apply a weighting function that is proportional to
0.09/n millimeter, since the minimum resolution of the camera system is in the order of
30 lines per millimeter. :

When multiple readings of each image coordinate are made, the precision of the measurements
increases as the square root of the number of pointings. In order to achieve a +4-micron toler-
ance, 2 minimum of three pointings on each image point is necessary. This is in accordance with
the standard operating procedures when making comparator measurements.

It is therefore concluded that the 2 4-micron reduced photo coordinate tolerance can be met,
provided that careful mensuration and reduction procedures be used, and that all equipment be
associated with valid calibration parameters. However, in the mimerical studies described in
Section 3.4, it has been elected to use a value that is considerably worse than this 4-micron value,
in order that our results should not be too optimistic.

Table 3-3 — Expected Residual Errors After
Applying Systematic Corrections

Magnitude,
Residual Error microns
oy Film distortion +1.5
a; Refraction +0.6
¢y  Camera calibration 1.5
¢,  Aberration £ 0.0
o Comparator calibration 0.5
- Camera mechanisms +1.6

Total residual error (RMS) 2.7
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3.3 THEORETICAL PHOTOGRAMMETRIC ANALYSIS

3.3.1 Introduction

The objective of this section is to devise an appropriate mathematical mode! by means of
which the photogrammetric aspects of the GOPSS program might be examined. In order that this
examination might be efficient, it has been devised to incorporate auxiliary data and to propagate
input errors through the computations into the output data. This error propagation is statistically
sound, and enables one to perform a systems analysis using covariance methods rather than the
laborious Monte Carlo techniques.

The selected error model will consider up to nine consecutive overlapping photographs,
although in practice it is doubtful if nine consecutive exposures can be obtained. These nine
photographs can be subject to orbital constraints and those imposed by auxiliary data. Asa
consequence of the limited extent of the orbital arc, a simple Keplerian model is assumed, which
corresponds to the osculating ellipse at the midexposure time. It is pointed out that such a
simple orbital model will not be used in the final data reduction scheme, but will include an
extensive parameterization of the perturbing forces.

The theory presented here is sufficiently general and extensive to perform an analysis of
the photogrammetric portion of the GOPSS. However, if long arc reductions are performed, as
will be the case in the final data reduction scheme, there is no serious problem in modifying the
model that is presented here. The basic theory and concepts remain the same, but some
laborious algebraic evaluations will be required.

3.3.1.1 Notation and Definitions
With reference to Figure 3-2, the following notation and definitions will be used in the

subsequent development:

Semimajor axis of the elliptic orbit

Eccentricity of this ellipse

Inclination of the orbit, angle YNP

Longitude of ascending node, angle XSN

Argument of perigee, angle NSA

True anomaly, angle ASP

Orbital period, the time elapsing between successive passages through the pericenter
Epoch, the time at which the body passes through the pericenter

The time at which the body is at some point P

Unjversal gravitational constant

Mean motion of body: 1= u% a ~¥? rad/sec

Mean anomaly: M =7 (- 7)

Eccentric anomaly, defined by M=E - e sin E

Celestial longitude of body, angle XZP

Celestial latitude of body, angle

TOMBTIE TN DR
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Fig. 3-2 — Orbital elements
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3.3.1.2 Rectangular Coordinates (XYZ) of Body
The coordinates of P with respect to the inertial system are given by

Xo Ayg By| {cos (E) -e
Yo| = |Ay By| |sinE
2o A, B,

in which the matrix

3.1

[Ax By
Az Bg

is given by

A, By cos 2 ~<oslsinQ| |cosw =sinw| |1 0 —|
Ay By|=a|sinq coslcos | |sinw cosw| lo (1-e})!” (3.2)

A, B, 0 sinl

The positional coordinates given by Equation 3.2 are in an inertial system with reference to
which the orbital elements are given. In order that they may be referred to some other coordinate
system, transformations will be necessary. These transformations are specified in Section 3.5.4.

3.3.2 Camera Orientation

Stellar cameras, used in conjunction with the frame camera yield approximate values of the
camera roll, pitch, and yaw. At the times of these exposures, the local horizon is equivalent to
the tangent plane at the nadir point, which is defined as the point at which the position vector, T,
to the air station intersects the reference ellipsoid. The longitude, $,, and geocentric latitude,
Ao, of the nadir are determined from

-

Xo €08 dg * COS Aq
Yo =T [cos &5 - 8in A, (3.3
Zg sin &,

according to
Ao = cos8™! [0 + YE)~17] , for Xo = Y, (3.4)
or

Ao = 8in~! [(Yo) (X4 + Y2)-12], for X, = Yo : (3.5)




and
o = tan™! {(Zo)(KE + Y5) 17 (3.6)

The orientation matrix rotating the ground coordinates into the photographic system may be
expressed as:

cosk sink 0 —cosrpo -sing || 1 0 0
R; = | -sink cos« ojfo 1 © 0 cos wj sinwy (3.7
0 0 1||sin¢ 0 cos¢|| 0 -sin w; coswj

The orientation between the local coordinate system and the geocentric terrestrial system is
determined as:
;osAo sin Ay 0} |sin dy 0 cos &g | [-cos Ag -8inAg O
O; = [sin A c0SAo O 0 1 0 sinx, «<osip 0 (3.8)
L 0 0 1||-cos &, 0 sin &, 0 0 1

Thus, the relationship between the photo-coordinates and the ground coordinates may be writien
as:

o - %, %, - x|
Vi~ Yo| =k (x;){0;)(w;)Ag)@c}A0) | ¥y - Yo (3.9)
£ ]. 2 - Zo|

where k is an undetermined scalar. The values of all terms in Equation 3.9 pertain to a discrete
time. For any specific time, t,, the corresponding terms may be evaluated and held constant in
this manner. The dynamic local system may be transformed into a static one with reference to
which subsequent computations may be performed for any time, t;, provided that appropriate
variations of xo, due to orbital motion of wj, cb], and K; {due to capeule tumbling), and of Xi, due
to the earth’s rotation, are applied.

This is accomplished through computing in the side{_eal system. Denoting the orientation
matrix R 0, as M], Equation 3.9 may be rewritten as x; = M]-Xi from which the projective

relat:onsh:p
o e
and
vy - [0 O%1 - Xo) « my (¥ - Yo) + iy (24 - Z)| a.11)
|1n, (i - Xo) + my (¥ - Yo) + myy (24 - 2o}
are obtained.
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In these expressions, { is the camera focal length, my) is an element of the orientation
matrix M Xos Yo, Zp are the coordinates of the exposure station in the XYZ system, and X,
Yy, and Zl, are the coordinates of the ground point corresponding to the image point x;, yj, - f.

These two equations are generalized for convenience into the form

mkﬂ (xi-xo)+mh (Yi‘Yo)+mh (zi-zo) {
= 3.
Pl = g 1 '.m,, (Xj - Xo) + my, (¥j - Yo) + myy (24 - Zg) )
where k=1,2
Gyi =% -
Gyj =¥i - Yo

These two equations may be expressed in terms of the constituent variables @y ¢ s Kiy Ags e« Zg-
It is noted, however, that some of these are functionally related to the orbital pa.rame ers and to
each other. The constrained solution must utilize independent parameters, as outlined in the
subsequent section. :

3.3.3 Constrained Solution

The functions given by Equation 3.12 express the relationship between a series of data con-
sisting of observed variables and known and unknown various parameters. Those which are known
are derived from observational data and are subject to the errors in these fundamental data.

On substituting the various parameters and data into Equation 3.12 the value of Fyy will be
zero if, and only if, all entries are exact. The problem is to determine the most probabie values
for all parameters and variables. This is accomplished through a constrained least squares
solution.

3.3.3.1 Least Squares Solution

Equation 3.12 is considered to be a function of the observed variables x; and ¥ij» and a function
of the parameters x,, ¥y, {, Wi, d: » Kis Qw1 en, 7, Y X, and Z;.

Consequently, rewrite Equation 3.12 as
Fii = i (%j, ¥is %o» Yoo &5 wjs @ & , @, L, &, 7, 75 X, Yj, Zy) 3.13)

Assuming that approximate values of these parameters are available, designated by a superscript
0, an approximate value of Equation 3.13 is obtained as

Fki =1 &, ¥5. . . X, YT, 2D) (3.14)

The true values of these ftems is obtained by applying a correction to these approximate values.

The reduced condition equation may be expreséed in the form

AxVx + BIAl + B:Az + Ex =0 (3.15)
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where V, = vector of unknown residuals
A, = vector of unknown parameter corrections
A, = vector of unknown parameter corrections
E, = vector of random variables

and
A =P (Fy, Fy i =2 (F, ) i (3.16)
X~ 3 (observed variables) 3 (xy, i) j )
B, = 3 (Fb Fy) i] = 3 (Fh F!) i] (3 17)
! 7 5 (unknown parameters) 3 {all or none of x,,. . . 7) :
3 (parameters to be constrained) & (remaining parameters) :

assuming that a statistical estimate of, for example, q parameters are known, and that we wish to

constrain the adjustment to fit these estimates, designate the statistical estimates of the q param-
eters 3 by

0
B0 B (3.19)
o}
fq
having an associated covariance matrix g
%G B - T
%384 0231 " g,
9 = . . . (3.20)
2
%8981 98qB: - - - 98q
L i
New linear equations may be formed and solved with Equation 3.15, according to
Bo + Vog =00 + 5, (3.21)

where ﬁf" = a current corrected value of T!°
VB = an unknown residual vector
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This equation is reformed as
where G = g0 - goo

Whence Equation 3.15 may be written as

AV+BA +E =0

where
\'j
i}
--- Az
E
"X
oL
Ay 1 O
A &-—;—gm
and
H
B, . B
B = .+ - —
M ‘J

The conditioned solution of Equation 3.23 for V and & which minimizes
s=vVTloty

is required, in which

= 1

]
o= l-ix-+.__
0 UB

where oy = the covariance matrix of the observed variables
The required solution is obtained from

S=VTg='v - 22T (AV + BA +E)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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in which A is a vector of Lagrangian multipliers, by setting dS/dV = 0 and dS/dA = 0, to yield

vV =gATa

and
-2BTA =0

which are combined with Equation 3.23 to yield
x = -(AcAT)™! (BA +E)

and

a = -(BT(AcAT)"! B]"! BT(AcAT) ' E

(3.32)

(3.33)

(3.34)

(3.35)

This equation is evaluated by partitioning, the partitions being given by the following identities:

[vs]
<)
5
>
N
-
m
"
|
|
|
l
|
|

Bf Wy B, BT W, By
and
Bf Wy Ey - 0;' G
BT(AGAT)'E = |— .~ .82 _
Bf Wy E,
where

W, = (Ay ox AT)"!

3.3.3.2 Application and Extension

(3.36)

(3.37)

{(3.38)

{3.39)

in order to clarify the previous treatment, a descriptive example of applying these formulas

to our problem is given.

For each photograph, j, one obtains for each point, i,

A al-‘l/axi BF,/ayi
i =
oF,/0x;  oF,/oy;
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To each ground point that is known, a variance-covariance matrix may be assigned. For
unknown ground points, coordinate values are estimated, together with large variances for these

estimates.

Orbital parameters are estimated from the given ephemeris, and values of rotations wj, @js
and x; are determined from stellar cameras. Values for x4, ¥, and f are obtained from calibra-

tion data. _
The end result is that all parameters are to be constrained, dictating that By = 0.

Consequently,

[(oF /oxo oF,/oxg
8F,/ayp 28F,/2y¢
aF/of  oF,/3f
aFl/an— aF._,/awj
BFi/aqoj aF,/2¢;
aFl/axj an/axj
3F,/a 3F,/aQ
B, d aF,/ow 3F,/w (3.41)
aF, /81  3F,/dI
aF,/2e  9F,/de
9F,/3n  aF,/8n
8F,/a7 8F,/aT
aF,/8Xy aF,/3X;
aF,/aYi ar,/aYl
3F,/3Z; 3F,/AZ;

The various covariance matrices are:

Oxi = the measured frame photograph images
oy = the ground coordinates

Oc = the frame camera constants

0o = the camera tilt angles

and
o, for the orbital elements
The two condition equations for each ground point image are:

AjVi+Bj4;+E;j=0




where

_ |
Ay | 0
M (SR ECR

0 : 1
{15 = 2) | {15 x 15)

Now,

_ T
Vi = Vxp Vyiro - >V Vo Vg Vi)

B,

{2 x 15)
Bi = --T.__

(15 x 15)
Bj = (6x0s Syps 0L, - - -8Z) T
and
Ej = (Exi» Eyi,- - -Egp) T
The associated weight matrix is
o ! = Diagonal (0gj, O¢, Tg, Tg» 0xi) "
On forming the normal equations, rewritien as
Na = -C, one ohbtains
N = BY (A;0AT)™" By
and
C =B (AjoAD) ' E;
from which the solution for & is obtained as

A= -N"’C

(3.42)

{3.43)

(3.44)

(3.45)

(3.486)

(3.47)

(3.48)

{3.49)

{3.50)

I one reconsiders the normal equations, it is found that they consist of two parts—one per-

taining to the orbital and camera parameter data, and one relating to the ground point data.
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Following the notation and derivation of Brown, the obsemtion Equation 3.23 may be rewritten
in the form

AV+Bb+BE+E=0 , (3.51)

where B, § refer to orbital and camera parameters
" B, & refer to the ground point data

Equation 3.37 may be rewritten in the form

Wy 0 0] [Uyoeal)™ 0 0
W=(AcAT)'=| 0 W 0] = 0 @1 o (3.52)
c o0 W 0 o @

where o = diagonal (0e, Og, Tar)
o = diagonal (oy,, 0%, , - - - 0Xi)
Equation 3.5 is equivalent to
A 0 0] fox! AT
w=[0 1 0
0 01

o o &

0
W
0

g0 O

c o
0 1 0
0 01

Similarly Equation 3.38 may be rewitten as

w, 0 0| |B B
N=BTwB=[BT -1 o]0 w o} -1 o
BT 0 1]|0o o W lo 1
™ o - . . - . .
(BTWyB + W) (BTw,B) N+W | R
= s s shiahan (3.53)
| BTw,B) BTwes-w)| [RT | W.w
Similarly, Equation 3.39 becomes
BT 1 of[w, 0 o]][E
¢ =BTWE = 0 W Of|E
BT o -ylo o WwW]lE

or

(BTWEy - WE) C - WE

(3.54)
(BTWxE, - WE)
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The normal equations, NA = -C are thus:

N+W R ||8 C -WE _ (3.55)
NT N+W|/{b C-WE

which for computational purposes is partitioned

RS N . NS ' 0 .
Ny N N [ A 2
Ry | L Ny + Wyl 18, |= |2, - WaEs (3.56)
TV T B TS
i T : N +€Vi L31 ] & -iiviéi‘
Let N-! = M, according to
N-W R TITM M
= (3.57)

| NT N+W MT M
Since NM = 1, then, noting that M = -M N (N + W)™, one obtains
M= [N+W)=N N+ W) NT] (3.58)
and
M=[N+W)'+ (N+W)'NTMN N+ W)!] (3.58)

In order to determine the corrections 5 and &, it is not necessary to solve Equation 3.58.
Consider

-3 M M||!C - WE
,} = (3.60)
| - - - - -
-6 | |MT M|lc - wE

from which
-6=[M (C - WE) + M (C - WE))
and

8= [MT (€ -WE)+ M (€ - WE)]



Putting

Q=(N+W)'NT (3.61)
then

M=-MQ
and

5=M[C - WE -Q(C - WE)] (3.62)
Since |

T+ N+ W)5)=C - WE
then

~(3)= (N + W)™ (C - WE) - Qb (3.63)

It is to be noted that N + W consists of i diagonally arranged 3 x 3 matrices, and consequently
presents no difficulties.

3.3.3.3 Error Propagation
In the final iteration

Vx = E - B5 - BS
V=E-3%

and

V=E-3

with & and B tending to zero; i.e.,

Vx - Ex

<' <
t1!

Now
S =V WV + VIWV + YTy | (3.84)

which when divided by the degrees of freedom gives the unit variance o,.



M is the covariance matrix of the adjusted camera and orbital parameters, and M 1s that
of the ground points. It is to be noted that M = (N + W)-! + QMQT, so that the covariance matrix

of any point g is
Mg = (Ng + W)™ + Qg Mg Qp - (3.65)

3.3.3.4 Auxiliary Data

Suppose auxiliary data, independent of the camera system, has been collected, which may be
expressed as a function of the various parameters. As an example, a radar altimeter will indicate
the value of nadiral distance, which may be expressed in terms of the orbital parameters.

Denote the vector of auxiliary data as A, which may be written as
Ap=Fp, @ @ ...7) (3.66)

then, as before

Ap = A%, + Vap | (3.67)
The various parameters ap = (2, w, . . . T} may be expressed as

ap = d"p + bap (3.68)
S0 that

VAh = An1 8@y .. . Apy 8ap = Epp, (3.69)
where

Epp = Fp (0, a3 . .. a°p) (3.70)

Consequently, an additional series of equations may be written as follows:
Vp -A8=E, (3.71)

which, together with the covariance matrix of A, may be incorporated into the previous solution,
according to

W] o8] [
val| |-A of|s Ea
. - (3.72)
v 1 0|l E
v o0 1 | E _|
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to yield

b e . -
(B'rw,a +w+ATwyA) ¢ BTWB N+W+ATWAAT! N
———— A e
N-= | = | (3.73)
BTw,B | (BTwyB + W) NT N+ W

and

C - WE - AWAE
C= (3.74)
¢ -wk
Similarly, auxiliary data pertaining to ground point data, X;, Y,, Z,) might be used to exploit
the relationship between auxiliary data and the various parameters.

3.3.4 Detailed Formulation

1t is considered unnecessary to present the detailed expressions for individual elements of
the various matrices and for the partial derivatives. This is due to the means by which these
items will be obtained in a computational sequence, namely, by appropriate matrix manipulations.
Furthermore, the final mathematical model will not be as simple as that used in this analysis.
However, it is considered worthwhile to present the salient formulas, and the expressions from
which the complete set of partial derivatives can be obtained.

The orientation matrix Mj = RjO] is obtained from the multiplication of six matrices,
according to Equations 3.7, 3.8, and 3.9. From Equation 3.12, the partial derivatives are
obtained that are defined by Equations 3.16, 3.17, and 3.1B as

3F,/oxq = 1 3F,/oxy = 0 )
aF,/ay, = 0 aFy/yy = 1 _
8F,/ox¢g = -1 aF,/axo = 0 » (3.75)
3F, /3y, = 0 aF,/0y, = -
aF,/3f = U/ Wy aF,/at = V{/W
where
Ui Xl - Xo
Vi|=M|Y;-Y, (3.76)
w 21 - zO

Working in the siderial time system, so that the values of X;, Yj, and Zi are replaced by the value
values X;g, Yia, and Zyg at time t; according to
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Xig = Xj cos ﬁ - Yj sin tj
Yis = Xj sin t; + Yj cos ti

Zis = Zj

then,

axis

il SR S [-mu sin t; + my, cos t; - % (-my, sin t; + my, cos tl{'

o+
2 e

3 Fa _ +f . :
a—-xis =W [tMa sin ti + my sint; -
a F,

3aF +f v

2 22 - —_—

2Zig W (m2 - my)

Recalling Equations 3.1 and 3.2, let us denote the component matrices according to

cos 2

[fa] =} sin &
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L. iwf—[m" cos t, + my, sin t;

b

[mn sin tj + myy cos t; - ¥y (-mu sin ¢ + my, cos "l)]

-cos I sin @
cos I cos

sin I

-sin w

Cos w
J

0

(1 _ez)l.ﬂ

- % (my; cos t; + my, sin ti)]

y (+m3, cos tj + my, Sin ti):]

{3.77)

(3.78)

(3.79)

{3.80)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)

-(3.8M)



Then the -pa;rt'lzl derivatives of the exposure stations with respect to the orbital elements are
obtained from

fax°/30 _
aY°/eq| = a [3(R1)/0Q] (w)(e)(Ee)
aZ°%/30

(3.88)

[9X °/81 ]
aye°/al | =a [a(d) /al] (w)e)(Eg)
|2Z°/81 |

(3.89)

— F_axn/a“;
aY/aw| =a (QD) [a!w)/aw] (eXEg) {3.90)
| 9Z°/3w)

FaX’/ae-
|av*/3e| =a (@)(w){[ (e)/ae] (Eg) + () [3(Eg)/2e]}
[92%/2¢

Since the orbital positions are concerned with the times of observation, t;, and since the mean
anomaly, M, is a function of tj, the epoch, 7, will be used as an independent variable. The remain-
ing partial derivatives for the orbital parameters are thus with respect to 7 and 7 according to

(3.91)

Fax”/anﬂ
3Y*/an | = a(Q)w)le) [2(Eq)/ 2e] - (7q « T)/(1 - e cos E)
az°%/a ° {3.92)
L / n__ - (xe,Yn’ZO)T . 2”»“3/33-'75’,
and
-ax=/ar.{ (ax"/_an‘i
ay’/ar | = - —2 5Y°/an (3.93)
Ti - T
az°/ar 8zZ°%/an

orientation angles wj, @js and Kj are obtained according to the general formula

IFK 3 ?
et =y [0 - x5 g ! s) +0 Y°’(e T 3¢

am 3
+ 2y - 2o) (5 -1y —5“1511)] (3.94)
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where .
v = Bt i - Xo) + mk (¥i - Yo) + miks (24 - Zo) (3.95)
K= iy (Xj - Xo) + My (Y3 - Yo) + mys (24 - Zo) :
k=1, 2

and £ represents the specific orientation angle. The derivatives of the orientation matrix
elements are determined from the products

[2 M)/awj] = (x)(w5) (3 (j)/25] (Ao)Bo)Ro) (3.96)

(o M1)/295] = () [ 3 (25)/203) (w)(Ao)BO)A,) (3.97)
and

[ : (M)/3x;] = [ 3 (k))/2Kj] (@j){w))(Ag} @), (3.98)

The remaining partial derivatives are those of the matrix M with respect to the six orbital
parameters, since the three factors A, %o, and A, are functions of the camera positions, which
are themselves functions of the orbital eiements,

The simplest manner of obtaining the required derivatives is again by matrix differentiation
according to
[3 (A0)/3Ro] (8Ro/2302)(® ) (A,)
[2(M)/30] = (5)@y)(wy) { + (Ay) [3 (85)/290] (3Ro/382)0,) (3.99)
+ (Ag)(®o) [3 (Ag)/aRg] (3Re/30)

in which
T
RO = (xO' Yo,zo)

with similar expressions for the remaining elements.

The final result of this procedure is to enable the partial derivatives of Fyy to be obtained
with respect to the orbtial elements, designated £, according to

Fj _ . (amk1 1. dmy ) amy, dmys
o W [(Xi Xo) 5, ~Thi Tag, ) * M1 " Yol\ag, T g,
+ (Zi - Zo) (_: -I' '—n) + (rkj Mgy = mki) ﬁQ_

%

320

+ (Tjy my - mh} g + (Tjy myy - mjg) - (3.100)

where I has been defined previously..
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All the terms necessary for the formation of the coefficient matrices have now been defined
so that the computational scheme can now be initiated. An identical procedure is available for

" any type of supporting data,

3.3.5 Weighting Proc_edures

In order that the analytical solution of photogrammetric problems may be completely general,
it is necessary that appropriate weighting factors be applied to the observed data., A basic tenet
of error theory is that observed data that are subject only to random errors should be weighted
proportionally to the inverse of their variances.

_ The only consideration of such a weighting procedure that has been revealed by a literature
search is that proposed by Hallert. In his original treatment, a near vertical photograph of a
signalized test area is measured. From these measurements, the weights of image coordinates
are empirically determined from an examination of the residual errors. These weights are then
applied to similarly located images on photographs which have been exposed under similar opera-
tional conditions.

A theoretically sound attempt is presently being made to develop a generalized weighting
_system that can be applied to all types of photography. At the moment, it is premature to state
any final scheme. The basic development is to consider each of the individual factors that
influence the accuracy with which data are photographically recorded and which influence the
extraction and refinement of these data.

In the course of combining these individual errors, it was evident that the total effect of
these factors on the photographic record was to limit the effectual resolution. That is to say,
the weights of the recorded photo data are essentially a function of the resolution after processing,

The influence of measuring errors on the extraction of the data have been considered and it
has been found that for accurate and well calibrated instruments, the compounding effects of
comparator errors are very small. The same holds true for the residual errors in the refining
processes (of which the application of comparator calibration data is one). This is evident if one
considers the accuracy of the homogeneous, or refined coordinates, in terms of the covariance
matrix

% oxyl
Clx,y) =
Oyx O

‘This homogeneous covariance matrix is derived from the covariance matrix of the extracted data
and from the refining parameters. Thus, if the extracted data x’, y’ are transformed according to

x={,{ay, ay, @y, . .. ap; X', ¥’)
and

y=13(ay, ay ay, ... ay; X', ¥’)
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th_en

Cla) o]

Clx, y) = Jix, ¥) ITx, )
O Cix’,

where J(x, y) is the Jacobian of x, y with respect to the variables a, x’, y', and Cle), C{x’, y')are
the corresponding cova;iance matrices.

For well defined and well determined transformations of the extracted data, C{a)tends towards
a null matrix, whence C{x, y) tends towards C(x’, y'}.

The value C(x’, y') is a combination of the comparator measuring errors and the inherent
data recording errors. Since the latter effectively outweigh the extraction errors, it is reasonable
‘to assign variances to the refined photographic data that are directly dependent on the system
resolution. This has been discussed in the previous section and will be the basis of the weighting
functions applied in the following section.
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3.4 PHOTOGRAMMETRIC COMPUTATIONS AND ANALYSIS

The computations and analyses presented in this section are directed toward demonstrating
the accuracy of landmark and camera position determinations. The various computations have
been enumerated previously, and each of these will be described in accordance with the following

format.

First, a brief description of the computation and its objectives is given; this description
includes a minimum of formulation. Second, the calculated data will be summarized. These
condensed numerical data will then be used as the basis of the recommendations and conclusions
concerning the photographic subsystem.

The first computations described are concerned with the accuracy that might be attained by a

resection of the camera station from a single controlled photograph. The subsequent computations
are concerned with multiple-photograph considerations, for which the basic program documenta-
tion has already been presented in the preceding secticn.

It must be emphasized that these computations form but a subset of a total data adjustment,

and that in the final reduction program they form a subroutine for handling a specific type of data.
This is a significant point that should not be overlooked in the detailed photogrammetric consider-

ations which follow.

As a computational convenience, the metric system has been used throughout these numerical
studies. This conflicts with the statement of work, and also with the fact that the system design
requirements are expressed in feet. Wherever possible, the conclusions and references concern-
ing system performance have been expressed in terms of feet.

Some special terminology has been used in this section. In order to clarify these terms, a
glossary has been compiled as Table 3-4.

3.4.1 Operational Design

The first operational consideration necessary for all succeeding computations was that of
determining the optimum overlap between consecutive photographs that would provide a solution
with a sufficiently high geometric strength to meet the specified accuracy. The program designed
to accomplish this was also able to substantiate some other considerations, the most important of
which was the selection of the final weighting function applied to the measured photo-coordinates.

The second program was organized to determine whether the increased corner resolution
obtained by using a smaller format was sufficient to offset the decrease in accuracy caused by the
smaller base/height ratio which may have resulted from using a small format.
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Table 3-4 — Glossary of Special Term.s

Strip Triangulation. Successive overiapping photographs are analytically connected to form one
consistent model of the photographed terrain

Bridge. A strip triangulation in which the consistent terrain model is adjusted to ground control
imaged on the terminal photographs

Extension. A strip triangulation in which the consistent terrain model is adjusted to ground
control imaged on the initial photograph

Functionally Constrained. The analytical expressions relating sets of data are combined into one
analytical expression relating all dependent data sets. Thus, the projective equations relate
ground coordinates, image coordinates, and orientations to air station positions; another expres-
sion relates air station positions to orbital elements; combining these expressions functionally
constrains the photogrammetric solution to an orbit |

Statistically Constrained. Same set of data in the least squares solution is permitted freedom to

adjust within some limits determined by the assigned covariance matrix

Unconstrained Solution. An unweighted least squares solution which may, however, utilize a
functional constraint .

Positionally Constrained. Exposure station estimates are statistically constrained to some
assigned covariance matrix )

Orbitally Constrained. Orbitzal elements are statistically constrained to the assigned covariance
matrix _
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3.4.1.1 Overlap Program

The basic objective of this program is to determine the optimum percentage overlap between
consecutive exposures. This was accomplished by considering five sets of three consecutive
photographs in which the percentage overlaps increase by increments of 5 percent from a mini-
mum of 55 percent to a maximum of 75 percent. Computations were performed using two adjacent

‘photographs and three photographs simultaneously. Nine ground control points were selected in
the stereo model such that the optimum geometric strength was afforded in each case. In addition,
six known points within the model area were suppressed and used as test points. The location of
these contro! data are illustrated in Figure 3-3.

The numerical results obtained from these computations are summarized in Table 3-5,
together with one set of data in which no ground control was held. Each number is an average of
the standard errors at the suppressed control points which are located at those positions where
one might expect the errors to be maximized, according to the Zeller-Brandenberger formulas.

These data do not exhibit any unexpected features. However, it is pointed out that the increase
in precision with an increase in the base/height ratio amount to approximately 5 percent as the
percentage overlap is decreased by 5 percent. This increased precision is not significant when
compared with the considerable improvement obtained with a triplet, which is in the order of 30
percent.

The significant increase in precision resulting from the use of triplets leads to the conclusion
that an optimum mission should be planned which utilizes an exposure interval such that all areas
" of interest are imaged on three consecutive exposures. This dictates that an overlap in the crder
of 70 percent is necessary—the minimum 67 percent with a 3 percent safety factor. Any overlap
range between this and the minimum 50 percent, to achieve complete double coverage, will furnish
heterogeneous results. It is suggested, therefore, that either a 55 or a 70 percent overlap be used,
but not an intermediate value, with the recommendation that a 70 percent overlap be adopted.

The differences in the ground control errors used on these calculations do no appreciably
affect the accuracy of point determination. This is attributed to the uniformity of the control
errors and the fact that their projections onto the photographic plate are not greatly different from
the size of the resolution elements. It might be argued that datum shifts are considerably larger
than the values used for control point errors in these calculations, but it is pointed out that these
shifts are uniform and may be determined by other techniques in the overall orbit calculations.

As long as no large relative differential errors occur in the ground control, it is not expected that
any large decrease in precision will occur.

Since this program is a constrained solution, it was comparatively easy to vary the weights
assigned to any input data. This enabled us to determine the individual effects on the output of
sets of data processing variable quality, which essentially simulates the designed experiments
used by statisticians using analysis of varjance techniques. For the purpose of determining the
optimum overlap for the GOPSS, the weights that are assigned to the input data are irrelevant,
provided they are constant for the set of varying overlaps.

The first set of data to which different weights were assigned in a sequence of parallel but
otherwise identical computations were the photo-coordinates. This was made necessary as a
result the data handling being considered as an operational task, as opposed to a controlled experi-
ment. There is some doubt as to whether or not the original estimate of the weighting function, namely
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{0.075/n)**mm?, is truly applicable in an operational mensuration program. Further discussjion
of this problem has revealed some sets of data obtained from actual production tasks from which
the pessimistic variance of (0. 075/n?) is derived. Consequently, the complete sequence of compu-
tations was performed twice, once uning the original weighting criterion of (0. 075/11) and once
using the pessimistic value of (0.075/n?)".

One other possible variation of input data was performed. This concerned the effects of
varying the accuracy of the ground control points on the determination of suppressed points. This
was done using the optimum solution, namely, a simultaneous three-photo solution in which the
control errors werefirst £3 meters in X and Y, and 10 meters in Z; and secondly, 10 meters

in each coordinate.

The tabulated data show that the ground point errors are significantly aﬁected by the weights
assigned to the refined photo-coordinates. The initial conclusion that is drawn from these data is
that the resulting ground point accuracies are proportional to the square root of the ratio of the
normalized standard deviations. This is supported, but not necessarily confirmed, by other nu-
merical data generated in this study.

3.4.1.2 Format and Resolution Program

The objective of this program was to determine the effects on the system accuracy by
decreasing the format dimension, thereby causing an increase in the average photographic
resolution.

For the same altimde and percentage overlap, a smaller format will yield less accurate
results, since the base/height ratio is decreased, all other factors being equal. However, the
smaller format decreases the effective angular coverage, and thereby excludes the marginal rays
in which the lower resolution degrades the image quality. This means that the accuracy of the
measured photographic image coordinates increases, whereas the geometric strength of the solu-
tion decreases. These two factors tend to compensate each other. It is emphasized that this was
a necessary program for the finalization of the camera design parameters for a specific lens
design. Consequently, although a smaller format will produce a photograph with a relatively high-
er average resolution, the resolution at corresponding off-axis angles is identical.

The program used to determine the total effect of the resolution format compensation was a
two-photo soluticn, functionally constrained to an orbit. In order to remove the effects of errors
in the orbital parameters from the program, these elements were assigned extremely high
weights.

Parallel computations were performed for two stereo pairs, one for the 9- by 18-inch format
and one for 8- by 14-inch format. Both models used a nominal 50 percent overlap and the same
geometric distribution of ground control points, which were equally weighted. This ensured that
the geometric strength of the solutions differed because of the base/height ratios only, and that no
differences could be attributed to ground control data.

Other errors in a photogrammetric mode} that affect the determination of ground points are
those of relative orientation and of the photo-coordinates. The photo-coordinate errors are
resolution dependent, so that the relative merits of the two formats may be evaluated by two
criteria, namely, the accuracy with which suppressed control points are determined, and the accu-
racy of the relative orientations. By assigning a large weight to the swing of the initial photograph,
and large variances to the remaining angular elements, the relative orientation of each pair is
readily determined.



Consequently, the only causes for differences in the computational outputs are due to the
- resolution effects and the base/height ratios.

The numerical output from the programs consisted of the covariance matrices of the
orientation elements and of the suppressed ground points. For brevity, only the diagonal terms
are presented.

The tabulated data in Tables 3-6 and 3-7 show that the relative orientation is better
determined slightly for the 9- by 18-inch format, and that the volume of the error ellipsoid at
determined ground points is also smaller, when compared to the 9- by 14-inch format. It is there-
fore concluded that the larger format is to be preferred.

3.4.1.3 Summary of Operational Procedures

The preceding computational studies have determined the parameters that are used in all of
the succeeding studies. Unless otherwise noted, these will be:

1. The format dimension will be 9 by 18 inches.
2. The sequential adjacent exposures will overlap by 67 percent.

3. Measured photo-coordinates will be weighted according to the lens resolution data
tabulated in Table 3-8. The photo-point variance assigned to the image coordinates will
be a conservative value of 0,075/n® mm?.

The relatively large variance for the image coordinates has been selected in order that we might
be confident in attajning any predicted system accuracies resulting from these computational
studies. It will be noticed that this variance is in conflict with the value used elsewhere in which
the criterion of £0.166/n is stated. This value is a result of recently completed studies (May
1986) at the National Research Center, Ottawa and at Delft, The majority of our computational
studies had been completed in this data; for consistency, the original calculations have been
retained.

3.4.2 Single Model Studies

The prime objective of these single model studies was to evaluate the positioning capability of
the photogrammetric sensor with respect to the centroid of five landmarks imaged on three con-
secutive frames. As in the preceding numerical studies, the use of exact fictitious data in con-
junction with associated covariance matrices enabled the effects of various parameters on the end
result to be determined.

Essentially, the three consecutive photographs were constrained such that the camera stations
lay on an orbit, and that the camera orientations were known to an accuracy of +5 arc-seconds, as
determined in the photosensor analysis.

The first study determined the purely photogrammetric error in landmark location as a
function of altitude by assumijng that the orbita! elements were exactly known. The second study
determined the effect on the landmark location errors by degrading the orbital parameters. The
combination of these two systems enables us to estimate the combined effects of an inaccurate
orbit at various altitudes on the resulting landmark capability. The third study determined the
error in locating the centroid of the five landmarks with respect to the orbit, and the error in
locating any other point in the model with respect to this centroid.
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34.21 Photogrammetric Errors on Landmark Locations

The basic analytical principles underlying this study have been presented in Section 3.3. The
essential features of the programmed computation were:

1. Three consecutive 9- by 18-inch photographs, overlapping by 67 percent, were functionally
constrained to orbital parameters.

2. The six elements of the orbit were statistically consiratned, to exactitude, by assigning
to them a covariance matrix that was a six- by six-unit matrix multiplied by a scale factor of
1 x 10~% ynits.

3. Within the triple overlap, nine symmetrically arranged ground points were selected. The
four corner points and the central point were assigned posttional covariance matrices equivalent
to positional errors of +300 meters (+1000 feet). The remaining points were assigned cova.ria.nce
matrices equivalent to positional errors of #1000 meters.

4, Camera orientations were assumed to be predetermined from stellar indices, with accur-
acies of £5 arc-seconds.

5. The inner orientation parameters of thé photogrammetric camera were assigned accur-
acies of oxp = Oyp = +£0.01 mm and of o = £0,015 mm.

6. The times at which the exposures were made were assigned accuracies of £0.001 second,

_ 7. The photographic image coordinates were assigned a variance according to the function
0.075/n% using the resolution data listed in Table 3-8.

The calculation of the covariance matrices of all nine ground points, and of the adjusted
camera orientations, were performed at three different altitudes, namely 120, 160, and 200
nautical miles,

The data resulting from these calculations (together with a parallel set in which altimeter
data were included) are summarized in Table 3-9. It will be noted that an average value of the
standard deviations for each set of nine ground points are given, since the range in accuracy was
not greatly different between each point in the photograph. The data without any altimeter control
do not meet the landmark specification with respect to elevation.

These tabulated data indicate that there is little improvement in the camera orientations. A
significant improvement is noticed in the accuracy of the landmarks, and these accuracies are
directly propertional to the camera altitude, according to a linear scale factor. It is thus possible
to estimate the accuracy attainable from some altitude, H;, by multiplying H, by the scale factor
HI/HI'

The inclusion of an altimeter in the GOPSS should provide elevation control to the photo-
grammetric model, along the track of the orbit. In order to determine the effect of such control
on the resultant landmark location errors, the central row of ground points was assigned eleva-
tion errors of £15 meters, which is the expected accuracy of the radar altimeter.

A significant increase in the accuracy of the ground point locations results from this
constraint. The average standard deviations, for the 160-nautical mile altitude, are +12.0 meters
cross-track, +12.8 meters in-track, and = 13.0 meters in elevation, indicating that the landmark
elevation criterion of +40 feet can just be met if the system includes an altimeter, and operates
at altitudes below 160 nautical miles.
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3.4.2.2 Orbital Errors in Landmark Location

: This study consisted of a sequence of calculations, for an elevation of 160 nautical miles,

which was identical with the preceding numerical study except that the covariance matrix of the
orbital parameters was varied. Before discussing the details of this study, it is appropriate to
describe the manner in which these covariance matrices were obtained.

The calculation of fictitious data for the three altitudes required that the orbital parameters
be known. Those used were derived for a nominal operational altitude of 120 nautical miles and
in a roughly polar and circular orbit. These parameters were rigorously scaled to the operational
altitudes of 160 and 200 nautical miles. Typical covariance matrices for normally circular and
polar orbits at the altitudes of 160 and 200 nautical miles were calculated in the process of the
orbital analysis. These calculations were acquired for a simulated orbit reduction that utilized
tracking data and Doppler data acquired over a 24-hour period. The simulated data were contam- .
inated by typical errors in the tracking data and in the ground station location. They are, however,
unaffected by errors that might be present in the selected geopotential model.

Although several of the harmonic terms of the earth’s potential field are fairly well known,
the use of such predetermined values might result in large positional errors. This is one of the
reasons for redetermining the geodynamic terms, not only to obtain improved values for these
parameters, but also to permit a certain amount of the residual errors to be absorbed by them.
It is in the basis of such an argument that Kaula, Anderlee, Veis, etal., predict relatively small
positioning errors and, furthermore, acquired satellite data in a redetermination of the potential
maodel.

It was reasonably assumed that these covariance matrices would be typical of the scaled
orbits that were used in calculating the fictitious data, and could therefore be applied to our cases.
The covariance matrices obtained from the orbital studies were expressed wlth_reierence to the
geocentric radius vector, X, Y, Z, and the velocity components of this vector X, ¥, %2, ata
specific time. These were subsequently transformed into the covariance matrices corresponding
to the six orbital elements used in our solution, according to the rigorous transformation express-
ed in Section 3.3.5.

The upper triangular portion of the specific covariance matrix obtained from the orbital
analysis task described in Vol. IV for the 180-nautical mile altitude is as follows:

X Y z X Y z
X (m? 8.68+0 4.21-2  2.53.3 3.90-3 6.44-5 -2.80-5
Y (m? 8.55-1  2.27+0  2.88-5 -2,59-3  -0.49-4
Z (m? . 9.25+1  5.53-4 -1.06-1  -1.21-3
X (m¥s?) 4,34-5 -6.38-7 -1.17-8
Y (m¥/s?) 1.22-4 1.36-8
Z (m¥/sh) 1.08-6

In this matrix, the signed numbers following the numerical value for each element are the
exponent of 10 by which each term must be multiplied. Thus, the element XY designated by
4.21-2 is interpreted to be 4.21 x 10-2. This is in accordance with general computer usage.
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The transformed matrix corresponding to the six orbital elements used in our solution is:

n w I e n T
Q@ (radians®) 7.25-13 -7.56-11 9.05-13 1.60-13 -2.38-15 -7.64-8
w (radians?) 8.52-9 -9.87-11 -2.32-11 2.62-13 8.58-6
1 (radians® : 1.17-12 2.28-13 -3.08-15 -9.96-8
e (unitless) 1.711-12 -3.24-15 -3.50-8
n (radians?/sec?) 1.25-17 2.86-10
T+ (sec?) ' 8.75-3

In order that the effects of varying the quality of the orbital covariance matrix on the resultant
landmark locations could be determined, the original X, Y, Z, X, Y, Z was multiplied by scale
factors of 10, 100, and 1000, transformed into the corresponding orbital covariance matrices,
and applied to the three photo sclutions.

As expected, and in accordance with the preceding numerical study, no great improvement
in the camera orientations was exhibited. The essential data with respect to the averaged standard
errors are listed in Table 3-10, for each case, together with their differences from the case in
which no orbital errors are present, as determined in Section 3.4.2.1. The essential coaclusion
to be drawn from these data is that the photogrammetric and orbital errors should be root mean
squared to yield the final total error.

3.4.2.3 Relative Errors in Centroid Location

The basic data usged in calculating the accuracy with which the centroid of the five landmarks
is determined with respect to the orbit is obtained from the mumerical study pertaining to the
photogrammetric errors (Section 3.4.2.1).

Since the centroid is the center of gravity of the five landmarks, it is only necessary to
determine the standard error of the mean of these coordinates.

The covariance matrix of the centroid, denoted [C (X)], is obtained from the equation
[c )= [11T11L}[C X)) rr111]°/25

in which each I is a 3 by 3 unit matrix, and [C (X;)] is the 15 by 15 covariance matrix of the five
points considered. This furnishes the standard errors listed in Table 3-11.

Another numerical study was associated with this calculation. This was the evaluation of the
relative accuracy with which any point in the model could be coordinated with reapect to some
other point located jn the model. This was accomplished by considering the covariance matrices
of 2 series of points, at different separations, together with their correlations. The results for
the 160-nautical mile altitude are graphically presented in Figure 3-4.

These internal coordinate errors exhibit a remarkable linearity, as a function of distance
beyond a 40-nautical mile distance, that was quite unexpected. This is confirmed by those data
that were calculated for the 120 and 200-nautical mile altitudes, the values of which are related
to the 160-mile altitude produced by,a scale factor that is the ratio of the flying heights.
This is in agreement with the results of Section 3.4.2.1. For ranges below 40 nautical miles,
additional data have been calculated according to the standard photogrammetric error formulas.
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Table 3-10 — Average Landmark Errors With Varying Orbital Covariance
Matrix at 160 Nautical Miles

Cross-Track In-Track Elevation
Total Orbital Total Orbital Total Orbital
Scale of Orbital Error, Error, Error, Error, Error, Error,
Covariance meters meters meters meters meters meters
0 12.1 - 13.1 - 23.4 -
1 12.1 0 14.3 5.7 23.4 0
10 12.8 3.5 24.7 21.0 311 20.4
100 14.9 8.7 53.3 52.2 56.2 51.2
1000 69.0 87.6 115.7 115.0 113.6 111.2

Table 3-11 — Standard Errors Furnished by Covariance Matrix of Centroid

Cross-Track In-Track Error, Elevation Error,
Altitude Error, meters meters meters
120 +11.4 +12.6 +10.9
160 +15.1 +17.3 : +14.4
200 +17.6 +19.8 +16.9
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3.4.2.4 Final Analysis and Summary of Single Model Studies

The accuracy of locating the centroid of 5 landmarks in the triple overlap with respect to the
orbit has been determined. This could be equally well considered as a determination of an orbital
position with respect to accurately known landmarks. Viewed in this manner, it is concluded that
the specification for the determination of the camera position to an accuracy better than =8 meters

(30 feet) is not met, (according to Table 3-12). There are two ways of improving this situation.
The first of these is to ensure that elevation control is established in the model by including a
radar altimeter in the operational GOPSS. The other is t0 make extremely precise measurements
of the photographic coordinates so that the weighting factor proportional to 0.166/n can be applied
to the computational procedure. As mentioned in Section 3.2,, this is not an unreasonable factor
to use, whereas that which has been incorporated in all the calculations presented here is an
overly pessimistic value. The effect of using the better weighting value is to increase the system
accuracy to the values listed in Table 3-12, in which all computational data for the centroid
calculations are summarized.

These studies have also confirmed that the effect of changing the system’s operational
altitude corresponds to a scale change, and that the effects of a poor orbit determination do not
degrade the results as rapidly as one would expect, owing to the constraint imposed on the orbit
by the photogrammetric data.

3.4.3 Strip Triangulation Studies

The strip triangulation studies consist of two sets, namely, those pertaining to control
extensionand those concerned with photogrammetric bridging. The distinction between bridging
and extension is that of interpolation against extrapolation. Bridging is essentially a means of
determining the location of ground points between areas of known geodetic control, whereas
extensions are used in determining ground point locations by cantilevering from an area of known
geodetic control,

The objectives of these triangulation studies were as follows:

1. Determine the accuracy with which landmark locations could be extrapolated from, and
interpolated between, geodetic control located on a local reference datum.

2, Determine the accuracy with which either the camera positions or the six parameters of
the oscillating ellipse could be obtained from the local geodetic control.

The triangulations may be functionally constrained to an orbit and various statistical
restrictions can be imposed on the solution. This is termed the orbital mode. This means that
the triangulations can be performed either independently to determine the orbital parameters, or
in conjunction with data in an orbit determination. In the second case, the influence of the photo-
grammetric data will be minimal, but the simultaneous adjustment ensures that the photogram-
metric and orbital parameters are consistent with each other. The imposition of statistical
restraints on input data, in the form of a weight matrix, means that these data can be adjusted
within the bands imposed by the weight matrix. Thus, it is possible to include such parameters as
the camera focal length in the solution in order to solve for any biag that might exist in the cali-
brated value, or to enforce such data as orientation angles determined from stellar cameras.

The triangulations may also be calculated without the functional orbit constraint. However,
orbital parameters may be indirectly enforced on the solution by restricting the lens position by
the covariance matrices of the orbital radii vectors of the times of exposure. This is termed the

positional mode.
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Both computational sequences in the orbital and positional modes consist of three phases,
.which are as follows:

1. Phase I considers all input data as exactly known except photographic coordinates and
ground point coordinates. A weighted, least-squares solution yields the best fit of
photographic and ground coordinate data to camera orientation parameters.

2. In Phase II the adjusted values resulting from Phase I are used in a weighted, least-
squares solution to determine the values of the remaining parameters within the tolerances
assigned to their initial estimates.

3. In Phase I the adjusted values from Phase II are then used to re-adjust the ground
point and photographic coordinate data.

Each of these phases is an iterative procedure, requiring initial estimates of unknowns as an
input to the program. Initially, each phase as well as the compiete sequence was iterated. It was
discovered, however, that one iteration sufficed. Small differences between iterations did result,
but these differences were below the noise level of the computer. It should be noted that, in an
operational system which uses real and not fictitious data, several iterations may be necessary to
achieve convergence.

The typical strip contained three paraliel rows of control data located along the strip’s
longitudinal axis and the strip edges. Various combinations of these control data were used, and
are described in the following sections. Also included is a brief description of the salient program
features, and an analysis of the computational results.

Both modes have been used in the following computations, which consist of two parallel gets.
The first of these considers the orbital parameters and lens positions as unknowns, so that the use
of controlled strip triangulations for determining either lens positions or orbital parameters could
be evaluated in addition to the position of landmark location. The second set of data enforced
positional or orbital covariance matrices that were obtained from a typical orbital solution using
ground tracking data. Both sets of computations were repeated with the inclusion of simulated

altimeter data.

In this way, the efficiency of the photogrammetric method as a means of orbit determination
was obtained, and the value of altimeter data in the orbital calculations established.

The essential computations are specified in Tables 3-13 and 3-14.

3.4.3.1 Triangulation Study Description

Strip triangulations were performed in both the orbital and positional modes for operational
altitudes of 120, 160, and 200 nautical miles. Of these calculations, the positional mode is of
limited value, being virtually identical to a standard photogrammetric case,

With regard to the ground control data used in these triangulations, errors have been assumed
with respect to a localized survey datum. As such, the discrepancies between separate datoms
have not been considered. It is possible to determine these datum shifts, with respect to some
defined world wide geodetic system, by including a bias parameter, or even a set of bias param-
eters, for each of the separate geodetic systems that are utilized.
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Table 3-13 — Computational Scheme

Orbital Mode

Bridges and Extensions

. Determines accuracy of caleculating orbit
parameters and landmark locations, using
stellar orientation and minimum ground
control (Table 3-20).

. As above, but adds altimetric control.

. Determines improvement in orbital param-
eters, and the accuracy of landmark loca-
tion, using orbital parameters and stellar
orientations (Tables 3-21 and 3-22}.

. As in 3, but adds altimetric control

(Tables 3-21 and 3-22).

Single Model

. Determines accuracy of calculating land-

mark locations, enforcing orbital parameters
and stellar orientation only, without any
ground control (Table 3-26).

5.

Positional Mode
Bridges and Extensions

. Determines accuracy of calculating orbital

positions and landmark locations, using
stellar orientations and minimum ground
control (Tables 3-18, 3-19, and 3-22.)

As above, hut adds altimetric control
(Table 3-25).

Determines improvement in orbital positions,
and the accuracy of landmark location, using
positions and stellar orientations (Tables 3-23
and 3-24).

As in 3, but adds altimetric control
(Tables 3-23 and 3-24). ‘

Single Model

Determines accuracy of calculating landmark
location, enforcing orbital parameter and
stellar orientation only, without any ground
control (Table 3-27).
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The objective of the first set of computations, in which either the orbital parameters or
camera positions were virtually unknown, was to determine the accuracies with which either
orbital parameters or camera positions could be calculated, while simultaneously evaluating
the accuracy of landmark location.

A duplicate set of calculations was performed, in which simulated radar altimeter data was
incorporated into the solution, in order that the value of including an altimeter into the GOPSS
could be evaluated.

The specific restrictions imposed on these calculations were as follows:

1. Ground control points located in the first model were assigned spherical position errors
of £10 meters. All unknown ground points were assigned spherical position errors of
4+ 1000 meters. These errors are considered to be with respect to a local geodetic datum.

2. Simulated altimeter control was assigned a planimetric circular error of £1000 meters,
and an elevation error of +15 meters.

3. Timing accuracies were assumed to be *0.001 second.

4. Camera orientations were assumed to be predetermined from stellar indices, with
accuracies of 25 arc-seconds.

5. Inner orientation parameters of the terrain camera were assigned accuracies of
Oxp = Oyp = 0,01 mm and of o; = 0,015 mm.

6. For the orbital mode, the six elements were assigned a covariance matrix that was a six
by six unit matrix multiplied by a scale factor of 1 x 10? units, causing them to be
unknown.

7. For the positional mode, the lens positions were assigned a covariance matrix that was a
three by three unit matrix multiplied by a scalar of 1 x 10* mm?, causing them to be
unknown,

8. Photo coordinates were assigned variances according to #0.075/n? mm?.

A second set of triangulations was also performed (Tables 3-21 to 3-24), in which typical
orbital or positional covariance matrices were imposed on the solutions. The source, and the
actual values of these covariance matrices, are described in Section 3.4.2.2; otherwise, the same
restrictions listed above were maintained.

3.4.3.2 Analysis of Triangulational Data

3.4.3.2.1 Orbital Elements and Camera Positions

The tabulated covariance matrices for the unconstrained solution of the orbital extensions
and bridges indicate the accuracy with which these short photogrammetric arcs can be used to
determine the six elements of the osculating ellipse. With the exception of the eccentricity and the
mean motion, all elements exhibit almost perfect correlation. This indicates that although a solu-
tion has been obtained from the short arc, it can be improved by holding certain elements as known
values and solving for the three less dependent elements. Essentially, it is necessary to utilize
the photographic bridge in conjunction with other data that furnishes an orbital solution; alterna-
tively, the nine exposures should be widely distributed over the mission arc, since in their present
configuration they form little more than a single data point. For convenience, the standard errors
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of each element for the operational modes has been extracted from the tables iocated at the end
of this section, and are compared in Table 3-15 with the corresponding data obtained from the
orbital analysis as described in Section 3.4.2.2. These data indicate that the orbital elements are
determined from two to three times better in the case of triangulated bridges. Surprisingly, the
“inclusion of altimeter data has little effect on the accuracy of the orbital elements.

The most significant factor is obtained by examining the pertinent covariance matrices.
Although the elements 2, 1, e, and 7, appear to be well determined, in contrast to the determinga-
tions of w, and 7, these accuracies may be more apparent than real.

The solution for these elements, using the photogrammetric approach, is extremely weak for
- short strip triangulations. This is evidenced by the high correlations existing between various
elements that is essentially due to the photogrammetric approach. As a typical example, the
cavariance matrix of the elements for the altimetric controlled bridge has been transformed into
the corresponding correlation matrix, and is presented:

Q. w I e n T
1 -.940 +.972 +.132 -.T18 -.935
1 -.982 -.194 +.739 +.990
1 +.154 ~-.740 -.97%
1 -.762 -.321
1 +.824

In the case of the constrained modes, there is a small but significant improvement of the
imposed orbital covariance matrix. These data are not tabulated, but it is considered desirable to
present the transformed correlation matrix te demonstrate the increased strength of solution in
these constrained calculations {the matrix corresponding to the previous example):

n w I e ] T
1 -.6 +.8 +.05 -5 -.8
1 -.8 -.05 +.9 +.9
1 +.1 -7 -.B
1 -.6 -.6
1 +.9

The location of camera stations, when operating in the positional mode, exhibit virtually the
same general characteristics as obtzined in the orbital constrained calculations. That is, there is
little or no improvement in the case of constrained bridges and extensions whereas the uncon-
strained solutions provide the expected conclusion that bridges are more accurate than extensions,
and that both are improved by the inclusion of altimetric data. This is due to the high accuracy of
the imposed constraints, Section 3.4.2.2. The maximum geocentric positional errors for the 160-
nautical mile solutions in which the camera stations are assumed to be unknown are given in Table
3-16. These data lead to the obvious conclusion that photogrammetrically determined air stations
are not sufficiently accurate to form the basis of an orbit determination, unless those stations are
located over well controlled areas.
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Table 3-15 — Comparison of Standard Errors of Orbital Elements

Mode

Extension

Extension with altimetry
Bridge

Bridge with altimetry

Orbital analysis
{Section 3.4.2.2)

Q
radians
6.3-6
6.3-6
3.4-6
3.4-6
8.5-7

w I
radians radians
8.9-3 7.5-6
8.2-3 7.5-6
3.3-3 3.3-6
3.2-3 3.2-6
9.2-5 1.1-6

e

5.6-5
5.4-5
1.6-5
1.6-5
1.3-6

n T

rad/sec seconds
1.0-7 1.2
1.0-7 1.1
3.0-8 - 0.4
3.0-8 0.4
3.5-9 9.3-2

Table 3-16 — Maximum Camera Station Location
Errors for 160-Nautical Mile Altitude

Positional Mode

Extension

Extension with altitude

Bridge

Bridge with altitude
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42m
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24m
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3.4.3.2.2 Landmark Locations

Let us now consider the accuracy of landmark location for each of the triangulation programs.
The maximum errors in point locations for each computation of the nine phote strip programs
have been extracted and incorporated in Table 3-1T; detailed data are listed in Tables 3-18 to 3-27.

With regard to these extracied data, it is to be noticed that there are two sets of data which
have been derived from a single photographic model. These computations were made by constrain-
ing either the positional or orbital parameters to the previously defined covariance matrices
together with the orientation covariance matrices, in order to determine the accuracy with which
landmark locations could be hung on to an orbit. In easence, the mode] is without any ground
control and indicates the magnitude of the maximum errors that can occur for points imaged on
3 photos or in a bridge triangulation, provided enforced covariance matrices are realistic. These
calculations are similar to those performed in Section 3.4.2.1, except that all ground points were
assigned standard errors of + 1000 meters.

It also should be noted that there are some numerical values in the extracted data that exceed
those listed in Table 3-17. These data, however, do not occur in the area of trilap, and in the case
of the bridges, are beyond the control areas; consequently, they are excluded from the selective
tabulation.

The {irst point that is evident from the detailed tabulations is that the results obtained from
the orbita] mode are of a far greater accuracy than those resulting from the positional, This
points out that the imposition of functional orbital constraints on a solution enhances the targeting
capability to such an extent that it is pointless to use the other computational method if optimum
results are desired. This concurs with the recommendation that the final data reduction scheme
should incorporate all data simultaneocusly.

These data indicate that both the orbital extension and bridge can meet the specified landmark
location tolerances over a nine photo strip. It should be mentioned that these accuracies are with
respect to the local geodetic network, so that it is necessary to determine the relationship of the
various nets to a world geodetic system. This is a task that can be accomplished by the orbital
reduction, and in reality the referencing of the various geodetic datums to a fundamental system
should not compound these results seriously. This is basically confirmed by the analyses of the
single model studies, Section 3.4.2. '

Some comments concerning the detailed tabulations are in order. The first column consists
of the point identification number. These points have been selected, in groups of three, normal to
the {light direction, such that one point is at the extreme port side, one is on the flight track, and
the other at the extreme aft side of the strip swath. There are seventeen groups of these points,
sequentially arranged along the strip as shown in Figure 3-5.

As an illustrative example, consider Table 3-21. The first three points numerated, 1a, 1b,
and lc, correspond to the first column of the preceding scheme; the points, 2a, 2b, and 2c,
correspond to the second column, etc. ‘
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Table 3-18 — Positional Mode, Camera Station Errors in Geocentric Coordinates
{H =180 Nautical Miles)

Unconstrained Extension

No Altitude Control

Camera
Station oy oy o, Ox
1 17.8  13.9 16.8 17.4
2 16.6 14.7 1.8 16.5
3 16.6 18.4 29.1 16.1
4 21.1  21.1  40.7 16.6
5 27.6 21,8 52.8 18.5
6 43.2 23.9 61.8 22.0
7 58.9 25.7 81,7 27.1
8 T4.3 27.8 94,7 33.8
9 99.0 34.8 111.4 42.7
Units

Iy

13.7
14.2
15.3
16.4
17.5
18.8
20.1
21.7
23.7

: Meters

With Altitude Control

Oz

16.3
17.7
23.0
28.9
35.5
43.0
51.8
61.3
72.5

Oy

(7]

] B W W W W W W

Orientation Errors

Control

arc-sec
Cp Ty O
4 4 3
3 8 3
3 2 3
3 2 3
3 2 3
3 2 3
3 2 3
3 2 3
4 2 4

No Altitude With Altitude

Control
arc-sec

% %w

W W W W W W W W W
W N NN NN N W N
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Table 3-19 — Positional Mode, Camera Station Errors in Geocentric Coordinates
(H = 160 Nautical Miles)

Unconstrained Bridge Orientation Angles
No Altitude With Altitude
Camera No Altitude Control With Altitude Control Control Control
Station arc-sec arc-sec
Oy Oy o, Oy Oy 0, 0, Oy 9y O "(p .,
1 17.5  13.5 18,7 1.2 134 18.7 3 3 3 3 3 13
2 16.2 14.0 174 156 13.7 171 3 3 2 3 3 3
3 16.4 16,1 25.9 156 13.4 18.7 3 38 2 383 3 2
4 20,6 17.7 33.7 18.3 14.2 194 3 3 2 3 3 2
5 25,3 163 31.8 176 13.5 18,2 3 3 2 3 38 2
6 33.1 164 294 18,2 13,2 184 3 3 2 3 3 2
7 29.6 1.6 14,4 17.2 129 134 3 3 2 3 3 2
8 14.3 12,5 14.2 13.5 121 134 i 3 2 3 3 2
9 129 12,2 17.6 129 121 12,9 4 3 2 4 3 2

Units : Meters
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Table 3-20 — Covariance Matrices of Orbital Elements Determined From Strip Triangulations

Elements

Model

Extension

Extension
with
altimetry

Bridge

Bridge
with
altimetry

Q

4.0825-11

4.0737-11

1.1401-11

1.1397-11

[

-4,8867-10
7.8616-07

-4.8795-09
6.7067-07

-1.3254-11
1.0817-07

1.2193-11
1.0550-07

I

4.6093-11
-5.4179-10
5.5816-11

4,5993-11
-5.4897-10
5.5701-11

9.8409-11
-8.5613-12
1.1103-11

9.8375-12
-7.7804-12
1.1099-11

e

3.9537-11
-4.1386-08
4.4233-11
3.1874-09

3.5045-11
-3.9186-08
3.9132-11
2.9082-09

1.8566-12
-2.2789-09
1,8581-12
2.7177-10

1.8409-12
-2.2599-0%
1.8391-12
2.6964-10

n

~7.1468-14
7.8695-11
-7.9931-14
-5.7687-12
1.0531-14

-6.3844-14
7.2075-11
-7.1293-14
-5.2090-12
9.6659-15

-3.2663-15
4.5486-12
-3.2468-15
-4.9548-13
9.1314-16

~3.2505-15
4,5058-12
-3.2272-15
-4.9218-13
9.0781-16

-1.4855-07
1.0279-03
-8.3236-07
~6.2485-05
1.1485-07
1.4140-00

-7.1130-07
8.0885-04
~17.0239-07
-5.8379-05
1.0698-07
1.2763-00

-2.5446-08
1.1252-04
-2.1589-08
-4,2792-06
8.1779-09
1.3352-01

-2.4477-08
1.1007-04.

-2.0805-08

~4,2435-06
8.1092-09
1.9114-01

3-63



Table 3-21 — Constrained Extension in Orbital Mode
at 160 Nautical Miles

Ground control points located on initial model; uses orbital parahuters
obtained from long arc solution

No Radar Altimeter With Radar Altimeter

Crose-Track In-Track Elevation Cross-Track in-Track Elevation
Error, Error, Error, Error, Error, Error,
Point meters meters meters meters meters meters
la 6.1 6.1 8.8 5.9 8.1 8.5
ib 8.0 1.4 8.4 5.9 1.4 8.2
ic 5.7 6.4 8.6 5.8 6.2 8.5
2 5.4 5.2 1.6 . 5.2 5.2 1.4
2b 4.7 5.0 7.5 4.8 4.9 1.2
2c 5.5 5.5 1.7 5.3 5.2 7.3
Ja 6.3 6.3 10.1 8.2 5.7 B.6
b 5.4 6.0 8.8 5.3 5.4 T.3
3c 6.3 6.2 10.0 6.1 5.7 8.5
42 7.1 7.3 13,5 7.0 6.4 11.7
4b 5.8 6.8 12.3 5.7 5.9 8.6
4c 7.4 7.1 13.3 7.2 8.3 11,7
Sa 6.7 7.4 11.3 6.6 6.2 8.6
Sb 5.9 11 L1 5.8 6.0 1.4
Sc 6.8 1.2 11.3 8.6 6.2 8.6
Ba 7.3 8.2 ~13.9 7.2 8.7 1.5
Bb 6.2 1.8 13,1 8.1 8.4 B.6
6c 7.6 8.0 4.1 7.4 8.8 1.7
Ta 6.9 8.3 12.1 6.9 1.0 8.7
To 6.3 B.1 12,0 8.1 8.8 7.4
Tc 7.1 8.2 12,1 6.0 10,7 8.8
Ba 7.6 8.9 14,5 7.5 7.5 11.7
8b 6.5 8.6 13.6 6.4 7.0 8.6
Be 7.8 8.9 14.5 1.6 7.3 11.8
92 7.1 8.9 - 12,4 7.0 7.5 8.8
;) 6.5 6.8 12.3 6.4 7.3 T.4
9c 1.2 8.8 . 12.4 ) 7.1 7.3 8.6
10a 1.9 - 8.3 14.7 1.7 7.8 11.8
10b 6.7 0.0 13.8 8.6 1.6 8.8
10¢ 1.9 9.2 14.7 7.8 7.8 11.8
1la 7.4 8.2 12,7 7.2 8.0 8.8
11b 6.7 8.0 12.6 8.8 7.8 7.4
1lc¢ 7.4 8.2 12.7 7.3 8.5 8.5
12a 8.2 9.4 15.0 8.0 8.5 11.6
12b 8.9 9.2 14.1 7.2 8.2 8.6
12¢ 8.0 9.4 14.8 7.9 8.5 113
13a 7.1 9.2 13.3 7.5 8.7 8.6
13b 6.9 0.0 13.2 8.8 7.4 8.5
13c 7.5 0.2 13.3 1.5 8.5 8.8
i4a a.8 0.5 15.5 8.3 9.2 1.7
14b 7.1 9.2 14.7 1.1 8.8 8.6
l4c 8.2 8.4 15.3 8.6 9.0 113
1% 8.8 8.9 15.3 8.3 9.7 113
1% 1.3 9.4 14.9 1.2 9.2 8.5
15¢c 8.4 9.5 15.2 8.1 9.3 11.1

Adjusted camera statioms consistantly accurate to : 1 meter cross track, + 5 meters in track,
+ 5 meters elevation.

Adjusted camera orientations consistantly accurate to +3 arc-seconds for each orientation
angle.
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Table 3-22 — Constrained Bridge in Orbital Mode
at 180 Nautical Miles

Ground control points located on terminal models; uses orbital parameters
obtained from long arc solution

No Radar Altimer With Radar Altimeter
Cross-Track In-Track Elevation Cross-Track In-Track Elevation
Error, Error, Error, Error, Error, Error,
Point meters meters meters meters meters meters
1a 5.8 6.0 8.5 5.7 6.1 8.5
1b 8.7 7.0 8.5 5.7 1.5 8.3
1e 5.4 6.2 8.5 5.5 8.2 8.5
2a 4.9 5.0 7.5 4.9 5.0 7.4
2b 4.2 4,7 1.5 4.3 4.7 7.2
2c 4.9 5.0 7.5 5.0 4.9 7.3
Ja 5.6 5.4 9.7 5.7 5.2 8.8
3b 4.7 5.1 9.4 4.7 5.0 13
3c 5.5 5.3 9.6 56 5.3 8.5
42 6.4 6.1 12.9 6.5 5.8 11.7
4b 5.0 5.5 11.7 5.1 5.2 B.§
4c 6.6 5.9 12.8 6.6 5.7 1.7
Sa 5.8 5.7 10.5 5.9 5.4 8.6
5b 5.0 5.5 10,3 5.1 5.2 7.4
Sc 5.9 5.7 10.5 5.9 5.4 B.6
6a 6.6 8.2 13.2 8.6 5.8 11.4
6b 5.3 5.8 12,2 5.3 5.4 8.8
6c 6.7 6.2 13.4 8.7 5.8 11.7
Ta 6.0 5.9 11.0 6.1 5.8 8.8
k1] 5.2 5.8 10.9 53 5.4 T.4
Tc 6.1 5.9 11.0 6.1 5.6 8.6
8a 6.7 6.3 12.4 6.8 5.9 1.6
8b 5.4 6.0 12,4 5.4 5.6 8.6
Be 6.8 6.4 13,5 6.8 5.9 1.6
9a 6.1 59 10.7 6.1 5.8 8.6
9b 5.3 5.8 10.6 5.4 5.4 1.4
8¢ €.1 5.9 10.7 6.1 5.6 B.5
103 6.8 8.2 13.0 6.9 5.9 11.6
10b 5.4 5.8 119 5.5 5.5 8.8
10c 6.7 6.3 13.0 6.8 5.9 11,5
1la 6.0 5.7 9.9 6.1 5.6 8.5
11b 5.2 5.8 9.8 5.3 5.4 7.3
1ic 5.9 5.8 9.9 6.0 5.8 8.4
12a 6.8 5.9 12.2 6.9 5.9 11.4
120 5.2 5.6 11.0 5.4 5.5 8.4
12¢ 6.5 5.9 11.9 6.6 5.8 11.1
13a 5.2 5.0 6.8 5.2 5.2 6.3
13b 5.1 5.3 8.0 5.3 5.4 7.1
13¢ 5.0 5.0 6.8 5.2 5.1 6.3
14a 7.0 5.8 11.8 7.0 6.0 11.4
14b 5.2 5.4 10.7 5.4 5.6 8.4
14c¢ 6.4 5.7 11.8 6.6 5.9 11.6
15 5.5 5.4 T4 5.6 5.6 7.2
150 5.5 5.7 8.8 5.7 5.9 8.6
15¢ 5.4 5.2 ‘ 7.5 ’ 5.5 5.5 7.2

Adjusted camera station consistantly accurate to + 1 meter cross track, 5 meters in track,
and «5 meters elevation.

Adjusted camera orientations consistantly accurate to +3 arc-seconds for each orientation
angie.
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Table 3-23 — Ground Point Location Errors Constrained Extenaion in Positiona]l Mode
&t 180 Nautical Miles

Ground control points located oo initial model; uses orbital prrameters
obtained from long arc solution

No Radar Altimeter With Radsr Altimeter
Cross-Track In-Track Elevation Cross-Track In-Track Elevation

Error, Error, Error, Error, Error, Error,

Points meters meters meters matera meters meters
la 10.4 6.1 9.1 9.9 8.0 8.8
b 12.% 8.0 a.8 12,2 58 8.7
Ic 15.8 8.6 9.1 15,7 6.4 9.1
2a 10,7 5.3 1.9 10,2 $.2 1.6
2b 12.8 4.9 1.8 12.3 4.8 7.3
2¢ 16.9 5.4 8.1 18.9 5.2 1.9
Ja 12.9 8.2 10.4 12.3 5.8 8.8
k1] 14.4 5.8 10.1 14.5 5.4 1.5
k1 20.3 8.0 10.3 20,2 5.7 8.8
4a 13.9 1.2 13.8 13.7 6.4 12.0
4b 15.6 8.8 12.6 15.6 5.9 8.7
4C 219 6.9 13.6 21.7 6.3 11.9
Sa 14.1 1.2 11.8 13.8 6.3 8.9
Sb 16,3 6.9 11.% 16.2 8.0 1.6
5¢ 22.4 7.0 11.7 22.1 8.2 8.9
8a 15.0 7.9 14.3 15.0 8.8 11.7
Sb 11.0 1.5 13.% 1.0 8.4 8.8
13 239 7.8 14.4 23.% 8.7 12.0
7a 15.6 8.0 . 12.5 15.6 4.8 8.9
™ 18.1 1.7 12.2 11.6 6.4 7.6
Te 4.5 7.9 12.4 ’ 243 8.7 9.0
Ba 16.8 8.6 14.9 16.7 1.2 1.9
8b 19.0 8.2 13.9 19.0 . 6.8 8.8
8¢ 26.1 8.5 14.8 59 1.1 11.9
9a 16.9 8.7 12.9 17.2 71 8.9
) 19.9 8.4 12.7 19.9 8.9 7.6
fc 8.8 B.5 12.8 28.7 1.0 8.9
10a o 18 9.1 15.1 18.5 7.5 11.9
10b 20.8 8.7 14.1 20.% 7.1 X
10c 28,3 8.9 15.0 28.2 7.4 11.8
1l1a 18.9 8.0 13.1 189 1.8 8.9
11b 21.7 8.0 12.9 21.7 1.3 1.8
l1c 29.2 8.9 13.0 29.0 T.4 8.9
12a 20,2 9.3 15.4 20.1 8.0 11.8
120 3.1 8.9 14.4 . 23,0 1.6 8.7
12¢ 30.7 8.1 15.1 30.6 1.8 11.6
13a 20.7 2.1 13.7 20.5 8.2 8.9
136 2.9 8.8 13.5 233 1.8 15
13 31.% 9.0 1.8 313 8.0 8.9
1da .7 0.4 16.1 21.7 8.9 1.9
1@ 24.9 9.0 15.2 24.8 8.4 1.3
l4c ne 9.2 158 2.8 8.8 11.8
1% 2.7 e 18.3 22.4 8.7 11.4
1% 25.7 8.3 1.7 25,6 9.0 8.7
15¢ .. 9.5 1.1 T 9.2 113

Adjusted camera stations conaistantly accurate to + ! meter cross track, + 5 meters in track,
+ 5 meters elevation '

Adjusted camera orientations consistantly accurate to =3 arc-seconds {or sach orientation
angie.
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Table 3-24 — Ground Point Location Errors Constrained Bridge in Positional Mode
at 160 Naytical Miles

Ground control pointa located on terminal modals; uses orbital parameters
obtained from long arc sclution

No Radar Altimeter With Radar Altimeter
Croas-Track In-Track Elevation Cross-Track In-Track Elevation
Error, Error, Error, Error, Error, Error,
Point meters meters metars meters meters melers

1a 9.0 5.9 8.8 9.1 6.0 8.7
1b 10.4 5.8 8.7 10.9 5.8 8.7
le 13.1 6.3 8.9 13.9 6.3 8.8
2a 8.6 5.0 7.6 8.9 5.0 7.4
2b 10.0 4.8 T.4 10.7 4.7 7.3
2¢ 13.1 5.0 .7 {3.9 5.0 7.6
3 9.9 5.5 9.9 10.4 5.4 8.8
b 10.9 8.2 9.6 11.7 5.1 7.4
i 15.2 5.4 9.7 18.1 5.4 8.8
4a 10.6 6.3 13.2 11.1 8.0 11.9
4b 11.4 5.8 12.1 12.0 5.4 8.7
4c 16.1 6.1 111 16.9 5.8 11.8
5a 10.1 6.1 iL0 10.6 5.7 8.8
5b 11.4 5.8 10.7 12.0 5.5 1.5
S¢ 15.8 6.0 10.9 16.5 5.7 8.8
6a 10.8 6.6 13.6 11.3 6.1 11.6
6b 11.8 8.2 12.7 12.3 5.7 8.7
6¢ 16.6 8.5 137 17.1 6.1 11.9
Ta 10.4 6.2 11,8 10.8 5.9 8.9
™ 11.7 .68.1 11.3 12.1 5.6 7.5
Tc 16.1 6.2 11.5 16.6 5.9 8.9
8a 11.1 €.8 3.9 11.4 6.2 119
8b 12.0 8.2 12.8 12.4 5.8 8.7
Bc 16.8 6.6 13.8 17.1 6.1 119
9a 10.6 6.2 11.4 10.8 59 8.9
Sb 11.9 6.0 11.2 12.2 5.8 1.6
9c 16.4 6.2 11.3 18.6 8.8 8.9
10 11,3 6.3 13.6 11.4 8.0 11.8
10b 12.1 8.0 12,5 12.3 8.5 8.7
10¢ 16.9 6.4 13.6 17.0 - 6.0 118
11a 10.8 5.9 10,5 10.9 5.6 8.7
11b 12.0 5.6 10.3 12.3 S.4 7.4
lic 16.5 59 10.5 18.6 5.5 8.7
12a 11.5 5.9 12.5 11.6 5.8 11.8
12b 12.4 5.5 11.4 12.5 5.4 8.6
12¢ 17.1 5.8 12.3 17.2 5.7 11.3
13a 9.7 5.0 6.9 9.6 5.1 6.5
13b 12.5 5.2 8.9 12.7 5.2 7.2
e 148 5.0 1 14.8 5.0 6.6
14a 12.5 5.9 11.9 12.3 6.0 11.5
14b 1.7 4.8 7.3 13.2 5.5 8.4
14¢ 11.9 5.7 1.6 - 13.0 5.9 11.2
1% 10.4 : 5.8 7.6 10.3 5.7 T.3
1% 13.8 8.7 9.8 1}.8 5.9 8.4
1% 15.2 5.4 1.8 15.3 5.5 1.5

Adjusted camera stations consistantly accurate to + 1 meter across track, +5 meters in track.
- 5 meters elevation.

Adjusted camera orientations consistantly accurate to 1 3 arc-seconds for each orientation
angle.
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Table 3-25 — Ground Point Location Errors Unconstrained Bridge tn Positions] Mode
(H = 160 Ngutical Milss}

No Elevation Control With Elevation Control
Cross-Track In-Track Elsvation Cross-Track In-Track Elevation

Error, Error, Error, Error, Emtv Error,

Point meters meters meters metars meters meters
la 8.9 0.5 a.8 &8 9.4 8.5
1b 8.9 9.9 7.7 8.9 9.7 1.8
¢ 6.4 14.2 8.9 a.17 14.1 8.8
2a 1.2 2.5 1.7 7.2 9.4 1.6
2b 6.4 11.4 8.7 8.4 11.3 8.7
2c 1.2 14.2 7.9 7.2 i4.1 1.8
Ja 1.9 10.6 1.0 1.7 9.4 6.8
k1 7.5 1.5 1.0 1.4 10.9 8.8
k[ 7.5 14.8 1.2 7.4 13.9 7.1
42 15.0 12.9 11.0 12.2 10.8 10.9
ib 12.9 13.0 12.4 8.1 12.2 8.0
4c 11.7 16.9 12.0 10.2 18.3 10.8
13.8 13.7 18.3 13.5 10.6 10.3
5p 22.6 13.1 18.4 11.5 121 8.8
5¢ 20,1 14.7 84 11.2 13.4 10.3
fa 3.1 117 19.8 15.7 8.1 12.0
8b 27.8 14.3 1.8 12,5 13.2 8.5
6c 28,2 15,5 19.5 13.3 14.9 11.7
Ta 35.0 10.8 21.6 15.2 8.0 10,1
] 34.2 12.6 22.4 139 11,0 2.3
Tc 30.8 19.8 23.4 13.8 14,9 11.4
Ba 33.8 14.9 11,8 i5.8 10.7 11.5
8b a3 15.3 18.3 1.7 12.3 8.5
B¢ 32.1 20,8 20.2 14.8 18.3 12.4
9a 32.4 18.0 23.0 14.5 11.1 10.8
gb 2.1 18.8 23.4 13.6 16.1 11.4
9¢ 30.1 22.8 23,9 13.6 12.7 9.4
10a 9.8 219 20.2 14.8 12.3 11.8
i0b 29.6 22.3 20.8 12.8 15.4 8.6
1% 29.1 23.1 22.4 14.1 16.8 ‘ 12.4
lla 26,6 21.5 24 13.2 11.9 11.2
11b 25.6 22.4 25.2 11.9 14.8 9.7
1ic 25.3 23.2 25.6 123 18,2 11.5
12a 20.2 24.0 20.4 12.8 12.7 1L7
12b 20.9 22.2 21.2 10.8 13.7 8.6
12¢ 20.7 23.1 2.8 12.0 18.9 12.5
13 16.9 18.6 25.8 0.6 11.3 10.9
13b 15.5 17.2 28.8 8.1 12.4 2.5
13¢ 12.% 15.9 27.0 8.8 14.8 11.4
14 17.7 17.8 1¢.2 10.8 11.5 11.4
140 17.4 18.5 .2 8.3 12.7 8.8
14¢ 15.3 16.3 .8 9.4 15.4 12.6
1% 6.8 10.% 8.3 8.3 8.8 8.8
1% 8.7 11.4 1.8 6.1 10.4 7.0
15 8.8 12.8 1.8 6.0 12.3 7.3
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Table 3-27 — Uncontrolled Positionally Constrained Three Photo
Model at 160 Nautical Miles

No ground control; uses stellar orientations and long arc positions.

Cross-Track In-Track Elevation

Error, Error, Error,
Point Photos meters meters meters
la 1.2 21.9 16.6 29.8
1b 1-2 22-6 16.7 29.4
1c 1-2 25.9 17.1 29.8
1d 1-2 29-8 18,2 30.6
2a 1.2 21.1 14.1 27.4
2b 1-2 22.5 13.8 25.1
2c 1-2 26.0 13.8 25.2
2d 1-2 30.1 14.4 2.3
3a 1-2-3 20.4 13.1 22,7
3b 1-2-3 22.8 12.9 22.2
3c 1-2-3 26.8 12,9 22,2
3d 1-2-3 30.1 13.1 22.8
4a 1-2-3 21.1 12.9 23.2
4b 1-2-3 23.6 12.5 22.7
4c 1-2-3 27.1 12,5 22,7
4d 1.2-3 31.1 12.6 23.2
5a 1-2-3 21,7 13.4 23.6
5b 1-2-3 23.8 12.8 23.2
Sc 1-2-3 217.8 12.7 23.2
5d 1.2-3 31.8 12.8 23.6
6a 2-3 23.4 16.3 29.7
&b 2-3 25.3 15.0 28.6
6¢ 2-3 29.0 14.9 28.6
éd 2-3 33.8 15,0 29.8
Ta 2-3 24.2 20.6 31.2
™ 2-3 26.2 18.9 31.7
Te 2-3 29.9 18.7 31.6
d 2-3 34.1 18.3 32,2

Adjusted camera orientations consistently +3 to 4 arc-
seconds for each angle.
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3.5 SUBSTANTIATING STUDIES

Many different types of data, in addition to those specifically collected by the GOPSS, will be
used in the envisioned reduction scheme to calculate orbital parameters, orbital positions, and
the location of ground points. Both the input data and the computed outputs will be metrically
represented in different reference frames characteristic of their differing nature. It is considered
necessary to describe the basic coordinate reference systems that will be utilized in the GOPSS,
together with the transformations that relate them to each other.

The description of these basic systems forms the first part of this study. This necessarily
means that some consideration of “time” is made within this section, since time is the metric
quantity that is common to all dynamic systems. Time will be considered in detail in the second
portion of this study, which means that a certain amount of duplication exists.

The third section considers the accuracy of a specific type of coordinate data, namely stellar
positions. This investigation of the accuracy of stellar catalogs is vital to the understanding of
the errors that might be incurred through the use cof satellite-borne steilar photography.

3.5.1 Coordinate.Systems

3.5.1.1 Introduction

Owing to the varied nature of the system inputs, various coordinate systems will be required
in the data reduction scheme. For geodetic purposes, three distinct systems are necessary.
These will be expressed in terms of rectangular Cartesian coordinates, since they are easily
managed and readily transformed into other Cartesian systems. The three basic systems are:

1. Terrestrial reference system
2. Celestial reference system
3. Orbital reference system

Although the terrestrial system is defined by the mean terrestrial pole and mean Greenwich
meridian of a certain date, and the celestial system by the mean equator and ecliptic of a certain
date, in practice both systems are actually defined by the coordinates of physical points.

Thus, the terrestrial system consists of 2 number of distinct geodetic systems; the celestial
being defined by the mean places and proper motion of the reference stars in a catalog. These
two systems are related by a knowledge of the instantaneous pole, Greenwich sidereal time, and
the constants of precession and matation.

3.5.1.2 Terrestrial Systems

An ideal terrestrial coordinate system has been defined by Veis such that the origin is
located at the center of gravity of the earth, the Z-axis directed to the mean north pole, and the
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X-Z plane parallel to the meridian of Greenwich. This fixed system requires that the center of
gravity of the earth be known and, therefore, is replaced, in practice, by a number of geodetic
_systems (Xg, Yg, Zg) defined by the geodetic coordinates (®¢, Ay, Hy) of the origin of each
geodetic datum The origin of such a system may be transformed into the ideal terrestrial

system, and is a function of the absclute deflections of the vertical, t, v, L, (expressed in linear
units) at the datum origin according to

Xo sin $5c08Ng 8in Ay o8 g CO8 A | £
R, =|Y |= [sin &ysindo  cosio -cos @5 sindg| | 7
Z, -cos ¥, 0 -sin &, z

Provided that the geodetic systems are correctly oriented by astronomic methods, each system is
paralled to the ideal terrestrial system. In practice, however, small errors in azimuth (dA),
meridian tilt (d¢), prime vertical tilt (dv), and scale (dE) exist at the origin of the datum (since
these are all determined by observational methods).

Transformation of 2 geodetic system into the idealized terrestrial system is obtained from

= (i’i)g+f°+MA M; My X -io)g+ E & -J-Co)g

where
B 1 +dA sin g -dA cos ¥4 sin "o—
Mp = -dA sin ®o 1 +dA cos $g cos Ag
+dA cos ¥, 8inro -dA cos ycos)g 1
C 1 0 -dt cos Ao
M¢ = 0 1 +d& sin )
| d& cosxo df sinxg 1
3 1 -dn cos &, -dn sin ¢, sin A,
Mp = dn cos ¢, 1 dn sin $4 cos Ag
| dn sin ®58inAp -dn Sin $,c082¢ 1

Despite the internal consistency that exists within geodetic nets (about 10-%), nonconnected
triangulations may be at ditferent scales, which is why the scale error, E, has been included
above.

3.5.1.3 Celestial Systems

For points that do not rotate with the earth, for example stellar bodies, it is desirable to
define a coordinate system that is independent of the Earth’s rotation. The true pole is in motion,
and defined by the instantaneous axis of rotation of the Earth. This is determined by the
International Latitude Service, in terms of the angular coordinates of the instantaneous pole
with respect to the mean pole, used to define the terrestrial system. The rotation around this
instantaneous axis is measured by sidereal time—the Greenwich hour angle of the vernal equinox.
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It should be noted that the equinox is in motion due to the precession and nutation. Both of these
effects are dependent on the orbital configuration of the solar system and, being functions of
ephemeris time, may be predicted in advance. In addition, there are variations in the rotation

of the Earthwhich cannot be predicted and must be measured.

Both mean and true sidereal time (referrring to mean and true equinaxes respectively) are
given as functions of universal time, which is defined from actually observed sidereal time,
according to analytical expression. This time, corrected for motion of the pole is UT-31, which
is further corrected for seasonal variation in the Earth’s rotation to yvield UT-2. Since this
seasonal variation is extrapolated from past observational data, UT-2 is not exactly uniform time.

This mean sidereal time is defined as
6 = 100° .075542 + 360° .985647348 (MJD-33282.0)
+ 0°.2900 (MJD=33282.0)* x 10~
and the true sidereal time by

8 =18 -4.392 x 10-? sin (12°.1128 - 0°.52954T)
+0°.053 x 10~% sin 2 (12°.1128 - 0°.52954T)
- 0°.325 x 107 sin 2 (280° .0812 - 0° .985647T)
- 0°.050 x 10-? sin 2 (64°.3824 + 13.176398T)
where the modified Julian Date, MJD, = JD - 2400000.5 and T = MJD - 33282.0, This value of

9 is accurate to better than 0.2 inch. For higher accuracies, additional terms for the mutation in
RA will be required. The independent variable, T, has to be expressed in UT-1.

If the observations are made with respect toa clock keeping UT-2C as given by WWV or
VLF radio transmissions, this time must be converted to UT-1 by use of the corrections pub-
lished by the U.S. Naval Observatory. The application of the preliminary corrections to convert
UT-2C to UT-1 results in a standard error of sidereal time of about 5 milliseconds. For orbital
work, ephemeris time is ideal. This is not available until several years after the necessary data
has been collected, but may be adequately substituted for by Atomic Time A-1. Since UT-2C is
at a constant offset rate from A.1, A.2 could be computed from the known value of UT-2C.
However, it is recommended that the corrections published by the U.S. Naval Observatory be used
if available.

The true sidereal system, i‘s, is related to the terrestrial system according to
i = 89 xS

where

cos § sin 6 X |
Sg = -sin @ cos @ -y
=X co8f-ysin® -x sin 8+y coséd 1

and x, y are the coordinates of the instantaneous pole (radizns).
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The axes of the system defined above are not fixed with respect to the star background, owing

to the luni-golar gravitational attraction on the Earth’s equatorial lulge. The effect of nutation
may be removed to yield a system, Xp, that has only a long term periodic motion according to

x; = MA xp’

where

1 -Ap -Av
MA = Ap, 1 A€
tay ae 1 |

Ap, Ay, Ae, being the nutation in right ascension, declination, and obliquity, according to

Ap = -76.7 x 10-% sin (12°.1128 - 0° .0529539T)
+0.9 x 10-% sin 2 (12°.1128 - 0° .0529539T)
-5.7 x 107° gin 2 (280°.0812 + 0° .9856473T)
-0.9 x 10-® sin 2 (64°.3824 + 13° .176396T)

Ay = -33.3 x 10-% gin (12°.1128 - 0°.0529539T)
+0.4 x 10°% gin 2 (12°.1128 - 0°.0529539T)
-2.5 x 107% sin 2 (280° .0812 + 0°.9856473T)
-0.4 x 107% gin 2 (64°.3824 + 13° .176396T)

Ac = 44.7 % 107 cos (12°.1128 - 0°.529539T)
0.4 x 10~° cos 2 (12°.1128 - 0° .529539T)
+2.7 x 10-% cos 2 (280°.0812 + 0°.9856473T)
This instantaneous mean system may be referenced to a mean system of standard epoch

(1950.0) and, by eliminating the precession effects, yields a fixed celestial system, W, related to
the Xp system according to

X, =PW
where the matrix, P, is given by

}-cosw -8inw O] [cosv 0 -sinv] [cosx -sink 0

P= |sinw cosw 0 0o 1 0 sink cosk O

0 0 1! {sinv 0 cosw 0 0 1

where x = 23°°0495.t + 0730 x 10-¢ . ¢
w = 2370495.t + 1709 x 104 - ¢
v= 2070426t + 0743 x 10~ . ¢




scorc D

t being the epoch in tropical jrea.rs since 1950.0. The terrestrial system is related to this tnertial
celestial system, W, according to

X=SMpPW

At this point it is to be noticed that the ideal celestial system can be replaced by a number of
systems, as the terrestrial systems are replaced by several geodetic systems. Each of these
astrometric systems is associated with a star catalog that gives the mean positions and proper
motions of the stars, which are not always referred to the same equator and equinox. Transfor-
mations may be made between the existing catalogs by applying the appropriate systematic and
periodic corrections.

'3.5.1.4 Orbital Systems

Desirably, orbital reference systems should be inertial, and preferably use the midepoch of
the interval for which the orbit is computed. Owing to the motion of the Earth in such a system,
due to precession and nutation, a periodic perturbation occurs. For an inertial system, only the
effect caused by the equatorial bulge, J, , needs to be considered.

If reference is made to the sidereal system, all zonal harmonics are fixed, the tesseral and
sectorial harmonics rotating with the earth. Perturbations will occur however, since the sidereal
system is not inertial, but a combined system that minimizes the perturbations has been devised.

Veis’ combined system for minimizing the perturbations has been proved to be the least
influenced by precession and nutation. This modified sidereal system (xm) is related to the true
sidereal system (Xs) according to

m = RXg
where
cos (u + Au) sin (u + au) 0—
R= |-sin (z + ap) cos (i + Au) 0

0 0 1

4 being the precession in R.A. since 1950.0. The modified sidereal time (angle), é, between the
Xm - axis and the Greenwich meridian is

8=6-(u+du)=9 - Ay
The transformation that relates these modified coordinates to the celestial ones is
Xm = RM.AP W
and that between the terrestrial and modified system

X'Mmim
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where
cos § sin 8 x
Mm ={-sin é. cos @ -y
xcosf-ysiné xsinf+ycoséd 1
so that

X =My, RM. AP W

This reference system, devised by Veis, eliminates the use of the ecliptic. In order to determine
the relation between the celestial and terrestrial systems, the sidereal system is used as an
intermediary only, for which the equator is a necessary reference plane, affected by precession
and nutation. The x axis, being selected as the mean equinox of a2 standard epoch (1950.0), is
also the x axis of the celestial system. However, it does not lie on the true equator of the same
date, so that a reduction for the nutation is applied.

This system has been used as a reference frame for satellite orbits computed at the
Smithsonian Astrophysical Laboratory since 1959,

3.5.1.5 Conclusion

The selection of an appropriate rerrestrial coordinate system for use in the data reduction
scheme may be completely arbitrary, since it is possible to transform between each system.

It is suggested, in view of the parallelism between different geodetic systems and the minis-
cule errors dA, di, dn, and dE, that terrestrial coordinates be expressed in the ideal terres-
trial systems. This implies that the value of such points are approximated by the local geodetic
coordinates, and a solution for the absoclute deflection components at the origin of each geodetic
system is obtained. This is one of the objectives of the program.

There is no reason why the celestial and orbital coordinate systems should not be one and the
same. Desirably, this should be inertial, so that the absolute values of the harmonics of the
Earth’s potential can be determined without being influenced by precession and nutation effects.
As pointed out, the various celestial systems are subject to inaccuracies. The discussion of the
sources of these errors and the recommendation for the system to be used is the content of
Section 3.5.5.

3.5.2 Time Systems

Three basic systems of time that are important in geodetic observations are ephemeris,
atomic, and astronomical. A brief description of these three systems is given in the following

paragraphs.

3.5.2.1 Ephemeris Time

Ephemeris ime is the independent variable in the solar, lunar, and planetary theories. It is
a uniform time which is defined so that the length of the day in ephemeris time is equal to the
average length of the day in universal time over the last three centuries. Ephemeris time is
theoretically defined by the orbit of the Earth about the sun alone, but it is necessarily determined
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from observations of the moon. Ephemeris time is not available until the reduction of the moon
observations is obtained, but this causes no practical problem as atomic time can be substituted
for ephemeris time.

3.5.2.2 Atomic Time

Atomic time, A-], is derived from atomic frequency standards. These are based upon the
frequency, ¥, corresponding to a transition between two atomic states separated in energy by AE,
according to the Bohr relation

hy = AE

where h is Planck’s constant. Thereisno proven difference between atomic time and ephemeris
time, although integration over an extremely long period of time may show slight differences.
Since ephemeris time is not available until the moon observations are reduced, atomic time is
substituted for ephemeris time for the accurate determination of interval and frequency.

Systems of atomic time are set up by averaging a number of atomic resonators and defining
the mean as atomic time. The system in most common use is A-1, set up by the U.S. Naval
Observatory using the weighted mean of a number of atomic resonators tied together by VLF
transmissions.

3.5.2.3 Astronomical Time

Astronomical time (as either sidereal or universal time) is a measure of the rotation of the
earth. The Earthis subject to changes in rotation which can be classified as secular retardation,
irregular variations, and periodic variations, in the order of a year or less.

The secular retardation, which is attributed to tidal friction, causes an increase in the
difference between astronomicat time and ephemeris time which can be predicted and is so small
as to be of no practical importance in astronomical observations.

The irregular variation, which has not been completely explained but is thought to be due to
changes in the Earth’s core, cannot be predicted and causes an important discrepancy between
astronomical and ephemeris or atomic time. This difference must be accounted for in astronom-
ical and geodetic observations.

The periodic variations are probably due to changing meteorological conditions throughout
the year. The effect on time, however, is suprisingly uniform from one year to the next.

In addition to the periodic variations in the rotation of the Earth, there are variations in the
position of the instantaneous pole of rotation of the earth that produce an apparent variation in
time. This variation of latitude places a limitation upon the accuracy to which astronomic time
can be determined. An error of 0.01 second in the latitude produces an error of about one
millisecond in time. Although the position of the pole is immediately known to 0.03 second, the
accurate determination of astronomical time must wait for the reduction of the latitude data by
the International Latitude Service. In retrospect, astronomical time can be determined to about
one millisecond from the average of all PZT’s and astrolabe sights for one day.

Astronomical time is determined by measuring the transits of stars. This is given in
sidereal time to an instantaneous pole which can be changed to universal time by a rigorous
formula. When corrections are applied to bring this to the mean pole, the transformed time is
UT-1. The national time services further transform UT-1, which is the time that must be used




for geodetic and astronomical measurements, to UT-2. UT-2 can be compared more easily with

E.T. and UT-2C. The system UT-2C is broadcast by WWV, and meets the requirements for
modern day timekeeping systems. These requirements are:

1. The phase angle of the Earth must be available, since this is needed for astronomical
observations and for the purposes of geodetic measurements.

2. 'The time must have an invariant rate, in order to meet the demands for phystcal
measurements and frequency control.

The UT-2C system meets the second requirement by offsetting the rate from atomic time, A-1,
by 50 x n partsin 10" where, n, is an integer. This rate is only changed at the first of the year.
The requirement that UT-2C gives a good value for the phase angle of the Earth is accomplished
by changing the clock by 100 milliseconds at the first of a month, if UT-2C differs from UT-2 by
more than 100 milliseconds. If the offset rate of UT-2C from A-1 is a good cholce as to the
variation between atomic time and the rotation of the Earth, then it should not be necessary to
change UT-2C by 100-millisecond jumps for that year. In actual practice it is extremely difficuit
to determine when the irregular variation will change direction, so that for the past several years
it has been necessary to introduce 100-millisecond jumps in the broadcasts for UT-2C. Thus,
UT-2C is a combination of universal time and atomic time, giving approximately the epoch of
universal time and the frequency of atomic time plus a known offset rate.

The radio time signals broadcast by WWV give UT-2C. These can be reduced to a prelim-
inary value to UT-1 using the predicted position of the pole as given by the International Time
Service. The final accuracy of the difference between UT-2C and UT-1 is determined by the
International Time Service using data from the complete system of latitude stations.

3.5.3 Frequency Standards

The basis of any modern timing system is a stable frequency source. Great strides have
been made in recent years in improving frequency standards. The clock associated with the
frequency standard counts the mumber of cycles elapsed between the epoch of the clock and the
event to be timed.

Of prime importance is the stability of the oscillator driving the clock. Oscillator stability
is usually expressed in terms of AF/F per unit time, where AF is the change in frequency per
unit time and F is the nominal value of the frequency. For example, short term stability may be
expressed as one part in 10" per second, or longer term stability as one part in 10!° per day.

Let us consider the effect of oscillator drift on time. If the drift rate is one part in 10* per
day, then each day as given by a clock driven by this oscillator is one part in 10° shorter (or
longer) than the true length of the day. If LOD (length of day) we have, after ten days,

A (LOD) = AF/F (10 days) = 8.84 x 10-? gecond
The average amount by which each day is short is 1/2 (8.84 x 10-*) seconds or 4.32 x 10-?
second. Then the accumulated time difference, AT, will be the average amount by which each
day is short times the number of days.

AT = {4.32 x 10~* second/day)(10 days)
AT = 4.32 x 10~? gsecond or 43.2 milliseconds
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AT = 8.64 CT + 4.32 KT

In general, we have

where AT is the time in microseconds, C is the initial frequency offset in parts in 10", K is
the drift rate in parts in 10'° per 24 hours, and T is the time in days.

In terms of stability and reproducibility, the best frequency sources are atomic resonators.
These devices depend upon an atomic transition to provide the frequency either by absorption at
resonance by gas, the atomic beam method, the maser principle, or the optical microwave double
resonance technique.

The rubidium frequency standard, unlike the cesium beam, is not 2 primary reference
standard because the rubidium gas cell must be adjusted, using a cesium or other suitable refer-
ence source to give the correct frequency. Once this adjustment has been performed, the
rubidium can serve as a frequency standard. The performance of rubidium is far superior to

that of quartz oscillators.

Other atomic frequency standards such as the hydrogen maser and NH; maser are not
suitable for airborne applications. Very good results have been obtained by thallium beam stand-
ards, but the equipment has not been designed into a small package as in the case of cesium and
- rubidium.

For reliability of operation and minimum volumetric and power requirements, the quartz
crystal oscillator is unexcelled as a frequency source. Quartz oscillators have very good short
term stability but over long periods they tend to drift badly. At the U.S. Naval Qbservatory,
quartz oscillators have been used to drive the clocks on a continuous basis with periodic compar-
isons with cesium standards to correct long term drift.

Quartz crystals tend to age and change frequency after a number of years, but the best
frequency stability is attained after the oscillator has been in operation for at least a month.

Where the clock can be calibrated occasionally or is not required to operate for long periods
of time, quartz oscillators offer considerable savings in weight and power requirements over
atomic frequency standards.

Quartz frequency standards are entirely suitable for millisecond timing accuracy if it is not
required that they operate for longer than about 20 days without calibration or time checks. If
periodic time checks are available as in the Navy Navigational Satellite System, and a method is
provided either to adjust the oscillator or change the counting rate of the clock, then the quartz
crystal oscillator has sufficient short term stability to operate a clock for the life of the system.
It is pointed out that it is not necessary to adjust the oscillator physically, provided that a record
of the calibration checks is made and subsequently imposed analytically. '

3.5.4 Accuracies of Star Catalogs

The users of stellar photography frequently ask for the accuracy with which star positions
can be obtained, This is rarely answered satisfactorily, owing to the long lead time and volumi-
nous amount of work required in order to determine specific accuracies. However, valid
estimates of mean catalog errors are available, which are of great value to the engineer who uses
stellar positions as a tool, not requiring an ultimate limiting accuracy. Although a comprehensive
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analysia of the accuracy of stellar positions is academically desirable, and serves to indicate the

future of stellar mapping programs, the systems engineer cannot afford, nor requires, to wait the
years necessary to complete such a program.

In the course of this analysis, it has been found that in the material that has been published,
many misleading statements have been made. The significant work consulted, apart from the
introductory material included in the catalogs themselves, are due to Scott, Eichorn, the Franklin
Institude, and the great Russian work “Fundamental Astronomy” of the Pulkovo observatory.

In regard to this discussion, it becomes obvious that the consideration cannot be completely
divorced from the studies of coordinate systems and time determinations. Consequently, although
this is at present an independent study, it will not be treated as such in the final system
integration.

In order that the ensuing sections might be appropriately considered, let us consider the
general philosophy of catalog errors, with special reference to the Washington N 30 catalog, the
internal precision of which approaches 0.1 second. However, this was published in 1952 using
observations relating to a mean epoch of 1930, Consequently, any errors in the proper m motions
must be propagated over a 35-year period, and although the proper motions of the N 30 stars are
among the most accurately known, average standarderrors accumulate at the rate of 017006 per
annum. In addition systematic errors also exist, and contribute in an unknown way tc the end
result. The subsequent sections will consider:

1. Systematic errors of catalogs

2. The derivation of a general system
3. Technique for comparing catalogs

4. An evaluation of the various catalogs

Systematic Errors of Catalogs

Systematic errors of stellar catalogs in right ascension «, declination &, and proper motions
{4 are usually expressed in the form:

M:AE-‘-AQQ-FAQO‘FAam
M=MQ+M6
Au=Aua+Au6+Aum

Ay

Ap' + Ay
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where AE = zero point correction to true equinox
Aay = error in a, as a function of a

error in «, as a function of §

=z error in a, as a function of magnitude

error in §, as a function of o

error in 6, as a function of &

Ay, = error in u, as a function of a

Ayu’s = error in u, as a function of §

Apy,, =errorin u, asa function of magnitude

Ap'y = error in u’, as a function of o

Ap'g=errorin u’, asa function of &

> P E
°'s§"a<§
noun ot n

The above equations are approximate. The systematic errors are functions of all parameters
simultaneously. The Aag, ASp, Oug, Au'p are usually considered constant for the entire catalog,
wheéreas the other terms are examined individually for zones of declinations. Let these errors be

considered:

1. AE is the adjustment to the catalog coordinate system needed to have the origin of the
right ascension catalog system coincide with the equinox at epoch. Even the absolute catalogs of
most observatories are dependent upon a correction to the true equinox for the catalog construc-
tion normally uses the origins of coordinates of the fundamental catalogs.

2. Ao, is a periodic error which can be expressed as:
Aa, =asina +bcosa+csin2a +dcos 2o

The 4o, term is also a function of declination if the observatory clock is at the wrong rate;
however, most modern observatories do not have this problem. Other than clock errors, the Aay,
error is the result of diurnal influences, instrument variations, seasonal variations, personal
responses, and refractional variation.

3. Aayg is mainly due to instrumental effects, personal errors of a systematic nature,
refraction anomalies. One form of Aay is the discontinuity at the zenith which results in a
personal error as the observer is forced into 2 new position. This systematic error is determined
by comparing different declination zones: for zones far from the equator Aoy cos § is compared.

4. Aap, is essentially a personal error. All observers record the transit of bright stars
early when compared to the transit of faint stars. The errors vary from observer to observer,
from magnitude to magnitude. The older catalogs list coordinates of faint stars that were deter-
mined by correlation with bright stars (as in the AG zone catalog). The errors in such an
approach are substantial and are presently undertermined. The modern catalog does not have this
particular error in position; however, there are statistical discrepancies between the proper
motions of bright and faint stars that have not been eliminated.

5. A3, errors are periodic and their major causes are seasonal instrumental effects and
refractionat changes. The equation

A, =asina + bcosa

adequately expresses this term; however, in some of the older catalogs the wrong nutation correc-
tion was applied, and this produced an effect that was incorporated into the Adg.
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In the case of absolute observations, the wandering of the pole and the variations in latitude are
additional sources of error. If the period of observation is many years, the 14-month (Chandler)
period can be excluded, but latitude variation, composed of two components (a polar motion, and

a local component or “Z” term) have an additional annual component. Corrections, in accordance
with the data from the International Latitude Service for polar motion is not sufficient; all
absolute observations must be correlated to the local variations of latitude at epoch.

The Aby of the catalogs seldom exceeds 0''2, and are commonly less than 01,

6. Ads are the most complicated and largest systematic errors of catalogs. The greatest
“contributions are instrumental, personal, and refractional. The personal contribution at the
discontinuity at the zenith can develop systematic differences at either side of the zenith as great
as 04 (Pulkovo Declination Catalogs of 1845). The A8z of the catalogs are independent if the
latitude variation and refraction determination are carried independently. The error is at its
largest near the equator and is one of the serious problems in astronometry.

The systematic errors in proper motion are completely analagous with those in right
ascension and declination, and need no further consideration here.

Derivation of a Fundamental System

The objective of a Fundamental System, such as the F.K. 4, is to represent the true system
of spherical coordinates as accurately as possible, from all available independent fundamental
positions of stars. The basic principles outlined below may also be used in 2 more restricted
sense, in converting stellar positions from one catalog to another. The essential steps are stated
below.

First, the systematic differences of all contributing catalogs must be removed (personal,
instrumental, refractional, etc.). These purified data serve as the basis of the new system. Let
a;, ay ay, ...apn be the coordinates in right ascension of N catalogs of various observatories
at corresponding epochs t,, ty, ty, . . . t; let K be the star in the existing fundamental system.

Second, reduce ay, a; ay, ...a, and K to a common equinox and epoch, to. A new star
system is generated by calculating the systematic corrections to the coordinates and proper
motions of the stars in the existing fundamental and to each, and all, of the observatories’ cata-
logs. Let the corrections to a particular star be

AK = correction to the star’s position in o in the fundamental system
4p = correction to the star’s proper motion

a; = correction to the star’s position in a in the observatory

“i"” catalog and let the true position in the new system be K’ at epoch t,.



Apart from random errors,

-

K =K1+AK1=3.1+AH. (to'tl)
K =K;+ 8Ky =a;+au (g - ty)
K’ =K,+AK3=aa+ Ap’, (to- ts)

k (3.1)

L

*KN+AKN=3N+Au (to-tN) J

Now, expand this scheme to include all stars in a region of sky with the star in question as for
example, a zone of declination or right ascension. The AK, Ay, a; are treated as systematic
corrections of a particular nature, such as da,, Ads, or Aap,. The N catalogs differ in the
individual systematic errors which are intrinsic to each catalog, and furnish N condition
equations containing N+2 unknowns,so that two additional conditions are needed. One of the two
additional conditions can be that the fundamental system has been derived as a weighted mean
of the observational catalogs, thus:

2 Wi daj = 0 (3.2)
N

However, there is good reason to regard the M most recent catalogs, which have been
compiled by modern methods, with special attention. A second equation analogous to Equation 3.2
for all the M catalogs may then be;

Y, w, aa; =0 (3.3)
M

At this point let t; be defined as the weighted mean epoch of the M most recent catalogs:
= -1
to © (2 Wi ti) (2 Wi) (3.4)
M M

This can be done if the corrections for the mean proper motions are included in (Kj-a;) of (1).

Now, each condition equation of the form 3.1 is multiplied by the appronriate catalog weight,
and then combined in conjunction with Equation 3.2, and similarly treated with Equations 3.3 and
3.4. The following two equations result;

AK 2 Wi + &y Zwi {t; - to) = - 2 w; (Kj - aj) (3.5)
M N

AK D, W= 9, Wy lK - ap) (3.6)
M M
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Equation 3.8 yields AK directly, and Equation 3.5 gives Au. Substituting, the results into
Equation 3.1, a; can be determined.

Technique of Comparing Catalogs
In order that data from various catalogs might be compared the following steps are necessary.

1. The two catalogs to be compared are referred to one epoch by means of the proper
motions of FK4.

2. The Aa (catalog minus FK4)are formed for all stars in common, which are grouped into
5-degree zones in & in the range -80 to +80 degrees, the limits being 0, 5, 10, . . . up to 80
degrees (the polar stars are examined separately) and are formed into means. Adjustment in
threes give the final Aag, which are subtracted from all Aa.

3. The residuals (Aa - Aag) for the equatorial zone (from -25 to +40 degrees for the
northern catalog) are divided into groups with limits Oh, lh, 2h, and so on. Averages within the
groups are adjusted in threes to give the final Aa, for this zone, which is denoted by (4aqg)y;
they are subtracted from the residuals for stars of all zones.

4. The Aa, for the stars in the other zones (+40 to +60 degrees and +60 to +80 for the north-
ern catalogs) are found by combining the residuals Aa - Aay - Ao, into threé-hour groups twice,
{the first with limits of Oh, 3h, 68h, etc., and the second with limits of 1.5h, 4.5h, etc.). Those
for the northern (+60 to +80 degrees) zone are multiplied by the corresponding cos §; the means
are combined with the (Aay); to give (without further smoothing) the final values.

5. The Aap, (rightness effects) are deduced by arranging the da -dag - day in order
of increasing m, the values being formed into groups covering 15 to 25 stars. The mean is
calculated for each group, as is the mean m, and these are adjusted by mean of &a - x + (m - 4.0}
y. All differences are freed from Aaqy, if significant results are obtained.

6. The systematic differences are checked for completeness by averaging the Aa - Aqyg -
Aay - Aam over areas of dimensions 2h in a and 10 degrees in 5, the results being examined
for any residual trend with 4 and &.

Various Catalog Accuracies

Each star catalog refers to a specific epoch, and the accuracy of star positions at some other
epoch depends on the accuracy of the star’s proper motion. Thus, if the mean errors of proper
motion at the epochs t, and t; are known to be €; and €, the mean error € of an extrapolated
position at time t is obtained as

e=led -t +ed -t )1V @ty -t
This is the basic equation from which the tabulated mean errors of the various catalogs can be
projected.
The following catalogs are in general use, and are briefly described:

1. Boss (GC): The GC was compiled from over 50 different catalogs during the years 1905
to 1937, and lists the coordinates and proper motion of 33,342 stars. The probable error of the
standard stars {(1900) is 0.1", but the probable error of over 2/3 of the stars exceeds 0.3".



The errors in proper motions have a greater dispersion. The GC has a degree of completeness through
the seventh magnitude, although many eighth and ninth magnitude stars are included. It should be
pointed out that the probable error of the faint stars in position and motion are always of less

accuracy than those of bright stars in any system, and as a consequence the fainter stars of the
GC have errors far worse than those quoted.

“Modern positions derived from the GC are so far in error that the expression, ‘GC system,’
has no meaning when applied to them” — F. P. Scott, Accuracy of Star Positions, U.S. Naval
Observatory. The GC was quite accurate at the time of its mean epoch, and the main probiem
in using the GC for current times is the proper motions. Approximately eight or nine stars
brighter than seventh magnitude from the GC would be required to give the same accuracy as the
N 30. Stars fainter than the seventh magnitude in the GC have a range of errors from 0.8" to
1.0 at epoch 1965.0, and the errors are unquestionably systematic.

2. N 30: The N 30 appeared in 1952, and has 5,268 stars well distributed over the entire
sky. It has a mean epoch of 1930, and at this current epoch (1965) two N 30 stars give the same
accuracy as one FK4 star (the two N 30 stars must be seventh magnitude or brighter). The
probable error of the N 30 is of the order 0.1" to 0.2"". The N 30 is perhaps the best system of
its size, for accurate astrenometry having well distributed stars; however, evidence is available
which suggests that the system is not completely homogenous. The FK4 and the N 30 systems
are departing from one another in quite a pronounced manner. By 1975, the two right ascension
systems will have deviated from each other by approximately 0,80 at -60 degrees declination,

3. Yale Zones: The AGKI (Astronomische Gesellschaft Katalog) was completed at the turn
of the century. For its development zones of declination were set up, in which visual observations
were undertaken. These same declination zones were employed in the construction of the Yale
Catalog. The Yale Zone Catalog included the proper motion of the AGK1 which are poor. As a
result, the Yale System is not homogenous, but it does contain a large number of coordinates
and motions of fair quality. The Yale System is composed of 22 catalogs, contains 145,000 stars,
and covers from 90 to -30 degrees in declination. This system would not suffice for detailed
position programs. Estimated mean errors are in the order of 0.3 to 1.4".

4. AGK2: The AGK2 was developed at the same time as the Yale, using the same declination
zones. There was one difference between the two approaches. The makers of the AGK2 consid-
ered the AGK1 too inhomogenous, and thus did not use the AGK1 proper motions. The AGK2,
integrated into FK3 system, yields a completely homogenous picture of the northern sky.

5. FK3: The FK3 is a network of 1535 stars, which was used as the ultimate fundamental
system for nearly all differential positional work prior to the advent of the FK4. The mean
positions of this catalog were published yearly to 0.01", but the probable errors of position were
of the order of 0.2". Systematic corrections have been uncovered in recent years with an order
of magnitude of 0.2". A revision of the FK3 has resulted in the FK4. These data have been
derived from the mean error at epoch and an annual proper motion, which are in the order of
0.042" and 0.0024" respectively.

6. FK4: The FK4 represents at this time (1965) the most homogenous system available.
Each of 1535, well distributed over the entire sky, have been cbserved in absolute and differential
series. (The FK4 stars are those of the FK3.) The epoch and equinox is of 1950.0, the mean
error at epoch and in annual proper motion being 0.033" and 0.0016" respectively.

7. S.A.O. Star Catalog: The $.A.0. is a reduction of all available stellar catalogs to a
homogenous frame of reference-—the FK4. The total number of stars is 258,997, covering the
entire sphere, having a star density of & stars per square degree.
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The catalog is available in three formats: magnetic IBM-729 tapes; printed book form; and a set

of 156 star charts. The average error of the S.A.0. catalog is a little better than that of the GC.
A more detailed representation of the errors is given in the histogram shown in Figure 3-6.

Perhaps the most significant attribute of the S.A.0. catalog is the extensive data available
for each star. The most pertinent information, for the purposes of error analyses, that are listed
with each star position are:

1. The right ascension and declination for the equator, equinox, epoch 1950.
2. The standard deviation of position at epoch.

3. The right ascension and declination for the equator and equinox of 1950 at the mean
epoch of the original observations.

4. The standard deviations of 3.

5. The mean epochs for the original observations.

6. The proper motions in right ascension and declination.
7. The standard deviations of 6.

It would appear that this momumental work will not be surpassed until observational data are
available for a revision of the fundamental system.

The distribution of stars and their positional accuracies for the catalogs that have been
described are summarized by Table 3-28.

Concluding Remarks

From the survey that has been made, it is apparent that one can apply appropriate weights
to the positions of stars that might be used in a data reduction shceme, It appears obvious that
the S.A.O. catalog is the most appropriate to use in a data reduction scheme, although the
average standard error is greater than that of the FK4. Essentially, it maintains the accuracy
that could be obtained from the FK4 catalog, if only the FK4 stars are used, and cannot be much
worse than the accuracies that are obtainable through using any other catalog. Although it may
never provide better results than the separate catalogs, since this is a transformation of all
cataloged data to the most modern fundamental reference frame, thereby containing unknown and
undeterminable systematic errors, it is the most extensive and homogenous catalog that exists.
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Table 3-28 — Stellar Distribution Accuracies of Major Star Catalogs

Mean Error

Mean Number  Number (1965)

Epoch of per
Catalog 1900+ Stars Degree @, 56 u Zones
Yale 26 51 1,031 0.22 0.6 90 to 85
Yale 27 47 8,164 0.24 0.6 60 to 55
Yale 26 47 8,380 0.24 0.6 55 to 50
Yale 24 23 10,358 0.51 0.9 30 to 25
Yale 25 28 8,703 0.43 0.7 25 to 20
Yale 18 40 9,092 0.37 0.8 20 to 15
Yale 19 40 8,967 0.46 1.1 15 to 10
Yale 22 40 1,904 0.46 1.1 10to 9
Yale 22 37 9,060 0.50 1.1 9to 5
Yale 20 37 7,996 0.46 1.0 S5tol
Yale 21 37 5,583 0.50 1.1 1to -2
Yale 17 34 8,108 0.61 1.3 -2 to -6
Yale 16 34 8,248 0.57 1.2 -6 to -10
Yale 11 34 8,101 0.78 1.7 -10to -14
Yale 12 34 8,563 0.82 1.8 -14 to -18
Yale 12 34 4,553 0.74 1.6 -18 to ~20
Yale 13 34 4,292 0.74 1.6 -20 to -22
Yale 14 34 15,110 0.82 1.8 -27 to -30
Cape 17 32 12,864 1.03 2.1 30 to -35
Cape 18 36 12,115 0.80 1.8 -35 to -40
Cape 2C 00 20,843 0.96 1.0 =40 to =52+
Cape 19 38 9,215 0,52 1.2 -52 to -56
Cape 20 46 14,710 0.80 1.2 -56 to -64
GC (Boss) 00 33,342 0.8 0.66 90 to =90
Cape 32 80,000 9.5 0.55 =30 to -64
Yale 36 145,000 6.9 0.45 30 to -30
Ni0 30 5,268 0.13 0.21 90 to -90
AGK2 30 180,000 8.3 0.21 90 to -2
FK3 12-15 1,535 0.04 0.2 90 to -90
FK4 50 1,535 0.04 0.12 90 to -90

SAO 50 258,997 6.0 90 to -90

* No proper motions.
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3.6 RESEAU SPACING

The appropriate spacing of reseau crosses, as implied previously, is largely dependent on the
method of applying reseau data. One may either use the measured and calibrated reseau data to
determine the parameters of an analytical function that appropriately expresses the film distortion
or use these data for interpolation of the distortion.

In either case, the supposition is that the systematic film distortions can be expressed as a
continuous function of the measured coordinates. Let the distortion be symbolized as

ax = fl(xos Yo)

and

ay = £,(x’, y°)
where x”, y® denote the measured film coordinates. Furthermore, let the interval between
reseau crosses be denoted h. Within this interval, linear interpolation may be performed such
that the interpolation error E, is never greater than a value

E < M;h¥/8

where M, is the maximum absolute value of the second derivative of the function over the range
h; i.e., :

M, = 111G, y9)|

Hence, in order to make the value of E less than some desired magnitude, say e, the maximum
interpolating interval is given by

h < (8e M,)'?
Similarly, second order interpolation yields a maximum error of
E = Mgh'/9 V3
where My = 1fill(x?, y%)i
Over the range 2h. For third order interpolation, the maximﬁm error is

E < 3M;h‘/128
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where M, = IfIV&°, y9)

over the range 3h.

These formulas are easily rearranged to determine the maximum value of h.

The problem of finding the maximum value of iMygi consists of determining whether the value
Mg + ; becomes zero within the interval under consideration. However, if a maximum does not
exist within this interval, then, since the function is continuous, it must be either increasing or
decreasing. By applying Rolle's Theorem, the maximum must lie at either the upper or lower
bound of the interval.

Let us consider a specific example, using actual measured data. These data were obtained
by multiple measurements of a 9- by 18-inch grid, at 1/4-inch intervals and of contact prints onto
a thin base Estar film. The variances of the calibrated grid coordinates was determined as 2.4
x 10~% mm?, and that of the measured film as 4.56 x 10~ mm?,

These data were used to determine the coefficients of a complete cubic transformation,
suppressing all but the major 2" intersections. Using the computed parameters, the suppressed
film data were transformed. The results indicated that no significant difference between the 2"
fit and the transformation of suppressed data existed. This meant that the selected cubic model
was a valid model, and that a reseau spacing closer than 2 inches was unnecessary. The specific
computational output on which these conclusions are based, and the substantiation that the expres-
sion for systematic film shrinkage was indeed valid, are now summarized.

Data for corresponding film and reseau measurements, at 2-inch intervals, were used
to determine the 20 coefficients expressing the film shrinkage. The standard deviation of these
film measurements, after adjustment was +0.98 micron. These paramsters were then used to
determine the residual error at every point that had been measured, resulting in a standard
deviation of +1.06 microns. Subsequent computations with the original data have been performed
to determine the cubic model to which all data is fitted. This gives a closer estimate of the
parameters of the equations

x =A+Bx°+Cy°+Dx02+Ex°y°+Fy02+Gx0’

+ Hxoy® 4+ Ixlyo? 4 Jyol

and
s s 0 0 0? o
YA +B' X +C'y + ...+I'x°y +J'y
in addition to enabling the independence of the distortions in x and y to be confirmed.
This means that
th &, y°) = 2D + 6Gx" + 2Hy
and

¥y =2F + 2 X, 63y




which are maximized to yield the appropriate values of {M,l. On evaluating the various values of
E, for variocus values of h, the errors in linear interpolation are:

h Ex, microns Ey, microns
1 0.11 _ 0.04

2" 0.44 0.17
21/ 0.69 0.26
3" 0.99 0.37

4 1.76 0.87

The interpretation of these results is that for the thin based Estar film that was measured
in reseau spacing closed than 5 ems is unnecessary, provided that a valid expression for the
systematic film shringkage is obtained, if one uses linear interpolation. Naturally, for quadratic
or higher interpolaticn, the errors are considerably reduced.
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3.7 CONCLUSIONS

The conclusions resulting from the numerical studies conducted during the photogrammetric
task of the feasibility study are as follows:

1. The positional error of a point on the orbit (Table 3-11), with respect to the centroid of
five landmarks common to three consecutive photographs, can be determined to better than =65
feet at 200 nautical miles, + 58 feet at 160 nautical miles (with accuracy), and * 41 feet at 120
nautical miles. These values are the maximum axial dimensions of the bounding error ellipsoid,
and were derived using a pessimistic weighting factor without altimetric control.

2. The location of landmarks with respect to the orbit can meet the specified horizontal
aceuracy of +200 feet for altitudes equal to or less than 200 nautical miles, and the specified
elevation accuracy of + 40 feet for altitudes equal to or less than 160 nautical miles, provided
altimetric control is available in each frame or i careful mensuration techniques are used.
Without altimeter data, elevation errors in the order of 75 feet are to be expected at the
160-nautical mile altitude.

This section reviews some of the computational results obtained in this study, and examines the
conditions under which the specified landmark accuracies can be met.

One group of studies, Section 3.4.2, assumes that landmark locations are known to + 1000 feet.
Using this information, and varying the accuracy of the orbital positions, it will be possible to
furnish ground positioning data with respect to a world geodetic system; this information also
defines the satellite’s orbit.

Another group of studies, Sections 3.4.1 and 3.4.3, examine the accuracy of positioning camera
stations and landmarks with respect to a local geodetic survey network, The datum errors in
the local system must be applied to these results if the absolute accuracy of these studies is to
be evaluated. It should be emphasized that the residual error in the determination of the datum
shifts should be applied, and not the datum shifts themselves, in estimating this absolute accuracy.

Next congider the three photo models, constrained to the orbital parameters and stellar
orientations, in which no ground controls are assumed to be known to better than 1 kilometer.
The results, listed in Tables 3-26 and 3-27 (the so-called uncontrolled constrained models) indicate
that the horizontal positional accuracy of landmarks with respect to the orbit can be readily
attained, The essential data extracted from these calculations are as follows:

Altitude, Cross-Track Errors, In-Track Errors, Specifications,
nautical miles feet feet feet
160 33 - 46 43 - 61 200
200 43 - 54 82 - 110 200




The conclusion that the horizontal accuracies for landmark location can be met is confirmed
by similar calculations in Section 3.4.2.1, provided that the orbital constraints and weighting

factors applied to the reduced photographic coordinates are valid, or provided that the degradation
of these factors does not decrease the accuracy of landmarking beyond the specified tolerances.

The effects of degrading the quality of the orbital covariance matrix, according to scalar
multiplications of 10, 100, and 1000 is examined in Section 3.4.2.2. From the results listed in
Table 3-10, it can be seen that the specified horizontal accuracies of landmark determination are
met when the orbital parameters are degraded ten times (covariance matrix multiplied by a

. scalar of 100) from those applied in the remaining photogrammetric studies,

Meeting the elevation accuracy specification of 40 feet requires some means of establishing
supplemetary elevation control. Such data is available from the radar altimeter which is incorpo-
rated into the total GOPSS instrument package. In addition to providing a sufficiency of ground
elevation data, the radar altimeter also furnishes data that is of value in the determination of the
earth’s potential field.

The basic information furnished by the altimeter is a series of distances between the orbiting
vehicle and the earth’s surface. These vertical distances can be imposed on the photogrammetric
solution according to the principles outlined for auxiliary data in Section 3.3. These altimeter
data can also be used to provide absolute elevations to numerous points imaged on the photography.

There are two basic problems involved in such a use of the altimeter. The first of these
is to determine the points from which the radar returns are obtained; the second is the provision
for some reference datum for the reduced elevations.

In conventional aerial photography which uses a radar altimeter, the directional antenna is
boresighted with a spotting camera to facilitate identification of the points of radar returns. This
is not an absolute necessity since the metric camera itself can be considered a spotting camera,
Provided that the vehicle ground track can be determined from the metric camera photographs,
the points from which radar returns are obtained can be readily identified. By selecting returns
from large flat areas such as lake surfaces that lie along the vehicle track, great precision may
be obtained. In this manner, it is envisioned that a large number of scale distances for each
mission can be obtained. If the orbit determination is sufficiently accurate, as concluded in
Volume 4, the orbit forms a good datum from which the absolute elevations of identified points
can be obtained. Alternatively, many of these points, such as lake surfaces, already have well
known elevations, and can be used as the basis of further orbital constraints, or as prior elevation
control points. For example, Lake Baykal, near the northern Mongolian border is of considerable
geographic interest and is known to lie at an altitude of 1500 feet.

The radar altimeter provides elevation control along the vehicle ground track for each photo-
graph. For controlling photogrammetric models, it is desirable that elevations are located at
the lateral margins of the photographs as well. In this regard, it has been shown in Section 3.4.2.1
that the central elevation control is sufficient to suppress the elevation errors close to the system
requirements. For a multimission system, such as the GOPSS, marginal elevation control points
should be readily available by transferring data points between mission photography. In an oper-
ational GOPSS, it is envisioned that elevation control points will be adequate to meet the system’s
specified elevation accuracies. This conclusion is predicated on the use of the radar altimeter
and the determinations of the geodynamic terms, and, in this regard, the radar altimeter data
can be of considerable value.
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The following data, obtained from Table 3-9, summarize the effect of additional data on the

minimization of positional errors at the anticipated 160-nautical mile orbit with the orbit
constrained to parameters given in Section 3.4.2.2.

No Control, Plus Altimeter,
feet feet
Across track 39 a9
Along track 43 42
Elevation Y& 43

This would enhance the system capability and provide for adequate constraints to the deter-
mination of shifts between independent geodetic datums. In this regard, it is considered desirable
to summarize the significant cases of strip triangulations that have been performed in which
the specified horizontal and elevation accuracies have been simultaneously met.

Table 3-29 shows that some of the constrained triangulations exceed the nine-photo strip
length. These extrapolations are obtained by considering the maximum errors in an extension,
which are certainly larger than the maximum errors of a bridge that is twice as long.

Note that these data are restricted because of the high accuracy required of the ground
elevations and that the ground control errors are assumed to be known to within + 10 meters.
If, as is expected and has been verified by the orbital studies, the datum shifts between various
geodetic nets can be determined with an accuracy of + 10 meters, these tabulated data can be
applied to landmark positioning with respect to a fundamental geodetic system,

With regard to the ground handling of mission photography, present techniques and equipment
can be used, and should be within the capability of any large photographic laboratory; however,
a realistic and efficient data handling flow must be established to process the large amount of film
that will result from system photography.

Table 3-29 — Maximum Number of Model Triangulations
Meeting Landmark Specifications

Altitude Altitude Altitude
120 nautical miles 160 nautical miles ° 200 nautical miles

Case No radar With radar No radar With radar No radar With radar

altimeter altimeter altimeter altimeter altimeter altimeter
Positional 3 models 5-6 models 2 models 4 models 1 model 2 models
extension
Orbital 8-9 models O models 4 models 7models 1model 4 models
extension
::ifl‘;f“‘l 5 models 8-9 models 7 models 8 models 2 models 5 models
Orbital
bridge 16-18 models 18 models 8 models 8-14 models 2 models 8 models
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3.9 MAPPING CAPABILITIES

While satisfying the GOPSS objectives, the data collection system will provide data usable
for mapping purposes. These datz are the photographs themselves and the cocrdinates of imaged
landmarks that can be used to control photogrammetric mapping. It is the purpose of this section
to evaluate the potential of these data in producing maps on the scale of 1:50,000, 1:200,009, and
1:250,000,

This will be done by examining the accuracyrequirements for these maps with regard to the
quality of the GOPSS data as determined by the photogrammetric analysis.

3.9.1 General Mapping Requirements

The accuracy reguirements of maps are usually separated into considerations of horizontal
and vertical accuracy, and are functionally related to the map publication scale, According to the
National Map Accuracy Standards, the evaluation of horizontal accuracy is made as follows:

“For maps on publication scales larger than 1:20,000 ot more than 10 percent of the points
tested shall be in error more than 1/30 inch, measured in the publication scale; for maps on
publication scales of 1:20,000 or smaller, 1/50 inch. These limits of accuracy shall apply in
all cases to well defined points only.”

The corresponding statement concerning vertical accuracy, extracted from the National Map
Accuracy Standards, is:

“Vertical accuracy as applied to contour maps on all publications shall be such that no more
than 10 percent of the elevations tested shall be in error more than one half the contour interval,
In checking elevations taken from the map, the apparent vertical error may be decreased by
assuming a horizontal displacement within the permissible horizontal error for a map of that
scale.”

These quotations establish the elevation accuracy as a function of slope (and scale), so that
the 90 percent limit, for a 1:50,000 map, in an area where the ground slope is a, is obtained by
adding to one half the contour interval (in feet) the value (0,02 x 50,000 x tan a)/12 feet. In the
following considerations, the effect of slopes will be ignored, so that in the event that marginal
elevation accuracies are achieved in mapping, it may be safely assumed that the elevation
tolerances can be met if 2 complete consideration is made,

The stipulation of a 80 percent assurance implies that the elevation standard error is defined
by o, = (contour interval)/1.645. Positional errors, on the other hand, are considered to be
composed of two horizontal components, so that the horizontal standard error should be calculated
as for a bivariate distribution, namely, op = (0.02 x Scale factor)/2.146.




In past considerations by Hallert and Thompson, the standard errors of horizontal positions
have been calculated as if they were members of a univariate population according to the 1.645
factor. This is incorrect, and it is theorectically undesirable to consider map errors as belonging

to two separate distributions. Ideally, these should be considered as belonging to a trivariate
population and map quality should be tested according to a total spherical (or ellipsiodal) error.

Such a treatment, however, has not been fully expounded in the technical literature, and since
it is in conflict with the map accuracy standards definitions, vertical errors will be considered
as being independent (i.e., belonging to a univariate distribution) and horizontal errors as being
members of a bivariate distribution.

In addition to the internal cartographic accuracy, the maps should be associated with a
geodetic accuracy, which enables the compiled map sheet to be absolutely positioned to certain
accuracies with respect to a world geodetic system. The specific requirements that must be
satisfied to generate maps of scales 1:50,000, 1:200,000 and 1:250,000 are listed in Table 3-30.

3.9.2 Mapping Specifications

3.9.2.1 Vertical Accuracies

The contour intervals and relative vertical accuracies listed in Table 3-30 have been derived
from document SH-65-8, dated 30 March 1966. The relevant quotation is:

“... a contour accuracy of 5-10 meters per 10-20 miles for 1:50,000 topographic maps,
25 meters per 20 miles for 1:250,000 topographic maps, 50-75 feet per 20-30 miles for 1:290,200
aeronautical charts, where contour accuracy is one-half the contour interval, ..., all accuracies

are at 90 percent assurance,...”

For the 1:50,000 maps, the 10-meter limit has been divided by 1.645 and converted to feet
to furnish the standard error of 20 feet. Corresponding values have been calculated for the small
scale maps.

The contour interval corresponding to these standard errors is consistent with the map
accuracy specification were then computed.

3.9.2.2 Horizontal Accuracies

Horizontal accuracies have been calculated by multiplying the vaiue 0.2 mile by the scale
factor, converting to feet, and dividing by 2.146.

3.9.13 Geodetic Accuracy

The geodetic accuracy with which the maps can be positioned with respect to an earth-
centered world geodetic system is the same as the accuracy with which the individual landmarks

can be located in this system.

According to Section 3.4.2,2, Table 3-11, the worst horizontal positional errors for altitude of
120, 160, and 200 nautical miles, are = 41 feet, + 58 feet, and + 865 feet respectively, with respect
to the orbit. The orbital errors have been shown to combine with these errors in a root-sum-
squares manner, so that the geodetic horizontal accuracy requirement is attained provided that
the orbital positions can be determined with anaccuracy of * 200 feet with respect to the world
geodetic system. According to the results of the orbital studies, this is a feasible accuracy.
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Table 3-30 — Mapping Specification

Map scale
Cartographic Requirements 1:50,000 1:200,000
Contour interval 65 feet 150 feet
Horizontal standard error 38 feet 168 feet
Vertical standard error 20 feet 45 feet
Relative vertical accuracy 20 feet/20 miles 45 feet/60 miles
Spot heighting accuracy - 15 feet/10 miles
Geadetic Requirements
Horizontal accuracy 210 feet 210 feet
Relative horizontal accuracy 24 feet/50 miles 24 feet/50 miles
Vertical accuracy 182 feet 182 feet
Relative vertical accuracy 9 feet/50 miles 9 feet/50 miles

1:250,000
164 feet
192 feet
50 feet
50 feet/20 miles

210 feet

24 feet/50 miles
182 feet

9 feet/50 miles
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The absolute vertical positioning of the map in the world geodetic system, with specified

accuracy of + 182 feet,(Table 3-30),can be attained if the orbital errors are less than * 172 feet.
Again, this is feasible.

It is therefore concluded that the absolute geodetic positioning of maps can be fulfilled by
the GOPSS landmark data.

The relative geodetic horizontal and vertical accuracies that should be attained using the
GOPSS landmark data may be obtained from Figure 3-4, Section 3.4.2.3. For an operational
altitude of 160 nautical miles, the relative horizontal accuracy in 50 miles is + 34 feet across -
track, and 26 feet in-track. These data do not meet the specification of a +24-foot circular
error as listed in Table 3-30. It is pointed out that the data obtained from Figure 3-4 is based
on our pessimistic weighting factor, and that under good conditions in which a better image weight
can be validly applied, relative horizontal accuracies of +24 and =17 feet, would be furnished, thus
indicating that the relative geodetic horizontal accuracy might be marginally attained.

In the case of the relative vertical accuracy, the GOPSS data, under the best conditions, is
approximately twice as bad as the specified 9-foot accuracy, so that this requirement cannot be
met by the GOPSS photography.

3.9.4 Cartographic Accuracy

The cartographic accuracies listed in Table 3-30, refer to the relationship of specific features
on the graphic representation to the basic coatrol net,

Tests conducted at Gimrada indicate that well adjusted first order plotting instruments
introduce a standard error of 0.1 millimeter into the map making processes. An additional graphical
error due to the instrumental coordinatograph introduces an additional standard error of 0.1
millimeter. Utilizingthe 0.5/2.146 standard error on the map, the permissible standard error
due to the photogrammetric data alone must not exceed the value

E =[(0.5/2.146) - 0.1% - 0.1*]¥* x S mm =0.184 S mm
where S =the map scale
Referring to the map accuracy standards, these errors should be applied to well defined

points. This implies that the landmarking accuracy of the GOPSS, determined by using a high
weighting, can be validly applied to this evaluation. These data according to Table 3-9 are:

Altitude, Maximum Horizontal Error, Expected Horizontal Error
nautical miles feet (Using High Weight), feet
120 33 22
160 43 28
200 52 33

These data indicate that the planimetric mapping accuracies for all cases may be met for
operational altitudes less than 160 nautical miles, and that even in the event that one uses ill-
defined image points in testing map accuracy, planimetric tolerances for a map at the scale of
1:72,000 for the 160-nautical miles altitude may be met.



The vertical accuracy of contouring is basically related to the relative accuracy where
elevation differences can be detected. With regard to Figure 3-4, the relative accuracy of
elevation determination is applicable to well defined points, i.e., it illustrates the expected spot
heighting accuracy. Contour lines, however, are not a sequence of discrete pointings on well
defined points, but consist of a continous traversing of the sterescopic model in which photo-
graphic information is of variable content and contrast. This decreased sensitivity and selec-
tivity has been discussed by Hallert, who uses the spot heighting accuracy to determine the
minimum contour interval that can validly be used. This is twice the spot heighting accuracy and
is inagreement with the contour intervals that most government agencies estimate they can attain.
This is also in close agreement with the larger interval quoted in the older photogrammetric texts,
namely three times the spot heighting accuracy.

Using the maximum relative spot heighting error or 40 feet at a 140-nautical mile horizontal
distance, and the three times criterion, the contour interval that might be applied to GOPSS
photography acquired at 160 nautical miles is 120 feet. This is certainly sufficient for mapping
at the 1:200,000 to 1:250,000 scales, However, it appears that a more consistent approach is to
convert the spot heighting accuracy into 90 percent assurance limits, which, when doubled,
furnish the minimum contouring interval that satisfies the map accuracy standards. The 40-foot
value leads to a contour interval of 131 feet, which is less than the intervals required for the
small scale maps.

For the mapping of a small area, say 80 miles square, we may use the relative accuracy of
24 feet at a distance of 40 miles, from which a contour interval of 80 feet is derived. This is the
interval usually associated with mappingata scale of 1:100,000, but is certainly not sufficient for the
larger scale maps of 1:50,000,

In order that mapping at a scale of 1:50,000 might be performed to map accuracy standards,
the GOPSS photography must be supplemented by additional data. These data can be supplied by
the addition of a high resolution pancramic camera to the GOPSS. The panoramic camera must
be capable of providing elevation data with a minimum accuracy of 20 feet, Using the standard
parallax formula, this is equivalent to a horizontal ground error of + 10 feet. This is the speci-
fication of the worst ground resolution for the panoramic camera that is necessary to support
the GOPSS camera in order to attain the 1:50,000 mapping specifications.

3.9.5 Map Information Content

To fulfill the information requirements of the generated maps, the imagery must provide
sufficient detail to interpret and relatively measure cultural objects such as large buildings,
suburban areas, roads and road classifications, hydrology, vegetation, and details of hills and
mountains,

These examples of landmarks to be interpreted, although most pertinent to the 1:50,000 scale
maps, are Scalable to the 1:200,000 and 1:250,000 scale maps. The approximate ground resolved
distances to satisfy the identification requirements are 8 feet for the 1:50,000 scale and 40 feet for
the smaller scales. Also important in the process is the location of this detailed data in the
generated maps.

An experimental program conducted during Phase I has evaluated the positioning errors
associated with the registratation of high and low contrast edges of varying image quality. Complex
targets which were not considered poasess an averaging phenomenon, since gradients in intensity
occur in all directions and throughout the format; the edges simulate the worst case possible with
no compensation in a single edge.



The resuits of the program indicate the probable error to be 1/6 of the difference between
the ground resolved distances of the two images,

In the case of B-foot high resolution panoramic photography, metric photography, and 108-{oot
resolution, the probable error is 15 feet, well within the positioning requirement of 50 feet for
1:50,000 scale maps. Also critical to the map-making process is the identification of detail
information in the areas being mapped, and the capabilities for transferring the location of this
detailed information into the created maps.

: In the case of a low-altitude mapping mission, the metric photography provides sufficient
detail for the map-making function; in the case of the GOPSS program with its original metric
records of scale 1:1,000,000, ground resolved distances for 1:50,000 scale maps will be provided.
The high resolution panoramic photography fulfills a dual need in the 1:50,000 scale map-making

process, i.e., contouring and detail identification,



3.10 GROUND HANDLING OF MISSION PHOTOGRAPHY

There will be two sets of photographic data recovered from each successful mission,
These are:

1. Approximately 22,000 feet of 9%-inch film exposed by the terrestrial camera
2. Approximately 10,000 feet or 70-millimeter film exposed by the stellar cameras

The processing of this film does not require any special techniques or equipfpent and should be
well within the capability of any reasonably sized photographic laboratory. However, owing to
the large amount of film that must be processed, a realistic and efficient data handling flow must
be realized.

The overall scheme of the film handling is summarized by the following chart (Figure 3-7),
with specific reference to the terrain records. This chart is not to be construed as a final
description of the data handling, although each of the significant operations is described and
associated with specific instrumentation. This hardware represents the selection of currently
available equipment that can fulfill the data handling task.

A brief description of the sequential steps in the film handling will now be given to point out
some of the anticipated problems.

For each mission, the tasks performed by the photographic laboratory are included in blocks 1
through 7 of Figure 3-7, starting with the original undeveloped film and ending with the production
of diapositives for the succeeding mensuration tasks,

The first problem encountered in the processing of the original negatives is due to the limited
capacity of the developing equipment. This means that the unprocessed film rolls must be cut
into manageable lengths that are compatibie with the processor. Since it is not envisioned that
equipment having a greatly increased film capacity will be developed, it is expected that the
original film will be cut into 1500-foot rolls, compatible with the suggested Houston Fearless
HTA/3C processor.

One HTA/3C, operating at 21 feet per second, will process a total mission output (terrestrial)
in approximately 20 running hours.

The inspection, editing, and splicing of the processed negatives is a considerably time-
consuming task. Despite the possibility that a significant portion of terrain photography will be
useless, owing to cloud cover and other detrimental effects, each of the usable records must be
inspected to ensure that the data blocks contain all the necessary information, and possibly that
their correlation with the stellar records is performed.

A similar problem is$ encountered with the stellar photography in that it i8 desirable to edit
all exposures, whether or not they correspond to usable terrain records. There are several
reasons for this, one of which is the possibility that camera orientations can be determined with
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suitable precision through an explicit function. This would permit a significant conservation of
storage and time in the final data reduction.

It appears from a survey of existing equipment that the Richards US-10B with dual viewing
would be the most appropriate means of performing the editing task, Film titling and cleaning
represent no significant problem since suitable efficient equipment is readily available from
commercial sources.

The final essential product of the photographic laboratory is the production of glass diaposi-
tives from the original negatives, on which the photogrammetric measurement will be performed.
At present, the Log E CP-18-§ and Flur-O-Dodge Model 918-C appear to be the most appropriate
equipment selections. However, it is envisioned that current proposals for the development of a
phosphor guenching printer will lead to equipment that will greatly enhance this aspect of the
photographic phase.

Planning and point selection for the photogrammetric measurements will necessitate paper
prints of the terrain pictures from equipment such as the Eastman Kodak Niagara or Log E SP 10/70,
which are also able to produce copy negatives. The resulting materials would be processed by
the HTA/3C.

The preceding steps constitute the initial phase of the data handling. The significant
bottleneck in this production is that of editing and inspecting the original negatives. It will there-
fore be necessary, from a production aspect, that a battery of editing personnel and equipment be
available. Assuming that one person might edit 50 frames per day, it would require a minimum
of 10 sets of equipment worked two shifts per day in order to accomplish this task in two weeks
of elapsed time.

In view of the preceding comments, it would appear that the requirements of the photo-
laboratory would require approximately thirty people, and the following equipment.

Item Quantity Use
HTA/3C 1 Processing of original film, duplicating,
processor printing
Richards US-10B 10 Editing and inspection
dual viewing table
Blaketon Titler 1 Film titling
Eastman Kodak Tacky Roller 1 Film cleaning
Log E SP 10/70 1 Duplicating negatives; producing paper
or prints
Eastman Kodak Niagara
Log CP- 18-85 1 Diapositive printing

or
Flur-0O-Dodge 918-C

This facility would prepare the photography from one mission for photogrammetric
measurements in approximately three weeks elapsed time.



The photogrammetric activities conclude with the measurement of the required image
coordinates. Prior to this, there is an enormous task ir the selection and transfer of points,
the identification of contrel, and the extraction of information from the data biocks.

The selection and transfer of pass points, as well as the identification of control, is initially
performed on paper prints, as a matter of convenience. These points are then transferred to
the diapositives and permanently marked. It would appear that since it might be necessary to
mark and transfer a large number of points, this task would be most economically solved with
the use of the 571-W comparison viewer produced by Opto-Mechanisms that has been modified
for point marking. It must be menticned, however, that the development of point marking devices
with improved accuracies and speed are to be expected in the near future,

The implication associated with point marking devices is that the coordinates of the marked
points will be measured with a monocomparator, This is not necessarily true, but, owing to the
large format size and the scarcity of appropriate instruments, it appears that the monocomparator
technique is the most feasible. Again, the future development of accurate automated stereo
registration comparators would appear to be imminent, and could greatly enhance the mensuration

time.

An alternative approach would be to use existing 9- x 9-inch mensuration equipment, if each
of the 9- x 1B-inch frames is used to produce two abutting 9- * 9-inch diapositives. There is
no serious objection to the technique, since the two segments are integrally united through the
reseau image. This does, however, increase the amount of time that will be necessary for
diapositive printing, point marking and transfer, and the mensuration task, This task is somewhat
facilitated by minimizing the number of reseau points to be measured, namely by measuring only
those four points that enclose a point of interest, and performing a differential connection for film
shrinkage.

So far these comments have been concerned with measuring the terrain photographs. In
addition, the extraction of pertinent recorded data such as exposure time, altimeter data, etc,,
could be efficiently performed during the preliminary point selection on the paper prints.
Information contained in the data blocks of the stellar photography could also be efficiently
extracted at the time that the star identification phase is performed.

Although automation of much of the stellar reduction is possible, the combined reseau and
image points to be measured for the terrestrial photography alone is in the order of 400,000,
a formidable number of measurements that could be accomplished in two man years using present
equipment and techniques, In addition to this, the transfer and marking of some 15,000 points
will entail a minimum effort of 1/3 man year.

The semiautomatic stellar identification procedures will require a future one man year of
effort, which is approximately the same as required for the selection and identification of terrain
images. By these computations, a grand total in the order of five man years, implying a staff
of 20, supported by equipment, could produce the desired measurements {per mission) in three
months of elapsed time. Unfortunately, although certain tasks will be performed concurrently,
measurements of the terrestrial photographs cannot be efficiently produced until all ground
control and pass points have been finally selected on the paper prints. A more detailed study of
these operational problems is desirable before a sound estimate of manpower requirements can
be established, but it is provisionally estimated that a capable staff of 50, supported by efficient
equipment, would suffice to perform this task (per mission)in a four-month period.
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