TOP SECRET # PHOTOGRAPHIC EVALUATION REPORT MISSION 1108 WITH SPECIAL STUDY: SO242 EVALUATION. MISSION 1108 # bath the TALENT-KEYHOLE control only Declassified and Released by the NRC In Accordance with E. O. 12958 NOV 26 199 TOP SECRET AUTOMATIC DOWNGRADING AND DECLASSIFICATION ### WARNING This document contains Information affecting the national security of the United States within the meaning of the explonage laws U. S. Code Title 18, Sections 793 and 794. The law prohibits its transmission or the revolution of its contents in any manner to an unauthorized person, as well as its use in any manner projudicial to the safety or interest of the United States or for the benefit of any foreign government to the detriment of the United States. It is to be seen only by personnel especially indoctrinated and authorized to receive information in the designated control channels. Its security must be maintained in occordance with regulations portaining to TALENT-NETHOLE Control System. Handle Via Folgot-VSYMOLE Control System Only TOP SECRET RUFF NO-FOREIGN-DISSEM TECHNICAL PUBLICATION # PHOTOGRAPHIC EVALUATION REPORT MISSION 1108 JULY 1970 NATIONAL PHOTOGRAPHIC INTERPRETATION CENTER **TOP SECRET RUFF** Handle Via -Toloct REYNOLE Control System Boly Talent KETHOLE-Control System Only DISTRIBUTION LIST Number of Copies Control System Only . . NO POSSION-DISSEM # TABLE OF CONTENTS | INDE | X OF | PHOTOGRAPHIC EVALUATION REPORTS AND SPECIAL STUDIES v | |------|----------|---| | GLOS | SARY | OF TERMS | | SYNO | PSIS. | | | | | GENERAL SYSTEM INFORMATION | | | Α. | | | • | А.
В. | Camera Numbers | | | c. | Launch and Recovery Dates | | | | Ortit Elements. | | | D. | Photographic Operations | | | E. | Film Usage | | PART | II. | CAMERA OPERATION | | - 1 | | | | 1 | Α. | Fwd-Looking Panoramic Camera | | | В. | Aftelooking Donound Branch | | | C. | norizon cameras | | • | D. | Stellar Cameras | | · | E. | Index Camera 5 | | | | • | | PART | III. | IMAGE ANALYSIS | | | • | | | | A. | Fwd-Looking Panoramic Camera | | • | B. | Aft-Looking Pancramic Camera | | | c. | Stellar Cameras 8 | | | D. | Index Camera. | | | E. | Graphic Display | | | | Graphic Display | | PART | IV. | IMAGED AUXILIARY DATA | | | A. | Fwd-Looking Panoramic Camera | | | B. | Aft-Looking Panoramic Camera | | | C | Stellar Cameras | | | D. | Index Camera | | | | | | PART | v. | MENSURATION QUALITY | TO TOREIGH DIESEM | PART | VI. FILM PROCESSING | 14 ' | |----------------|--|------------------------| | | A. Processing Machines and Process Camma B. Processing Techniques C. Film Handling Summary D. Timetable | 1 ¹ 4
14 | | PART | VII. PI SUITABILITY | .i7 . | | | A. PI Statistics B. PI Comments | 17
18 | | PART | VIII.RESOLUTION TARGET DATA | 19 | | PART | IX. MISSION DATA | 20 | | PART | X. MISSION INFORMATION POTENTIAL (MIP) HISTORY | 21 | | | | | | • • | LIST OF ILLUSTRATIONS | | | Figur
Figur | re 1. Best Image Quality (1108-1) | 22a
22a | تعد INDEX OF PHOTOGRAPHIC EVALUATION FEPORTS AND SPECIAL STUDIES | 11 | 7: | | |----|----|---| | [4 | 9 | • | | PER | DOCUMENT NUMBER | . SPECIAL STUDY | |---|-----------------|--| | 1033
1034
1036
1037
1038
- 1039
1040
1041- | | None None None None None None Slant Range Computations Related to Universal Grid | | 1042
1043 | | Coordinates for the KH4A Camera System None Scan Speed Deviation Analysis of the Forward | | 1044 | | Camera, Mission 1043 Dual Gamma/Viscose Vs Conventional/Spray Processing | | 1045
1046•
1047
1048
1049 | | Analysis (Mission 1044) None SO-230 Vs 3404 Evaluation None None Image Quality | | 1050
1051
1052 | | Comparison Mission 1102 Original Negative vs. Duplicate Positive None None SO-239 Second Generation Vs Third Generation Negative | | 1101
1102
1103 | | Slant Range Computations Related to Universal Grid Coordinates for the KH4B Camera System None None Bicolor Evaluation Report | | 1104
1105 | | SO-180 Evaluation Mission 1104
SO-121 Evaluation; SO-180
Supplement | | 1105
1107 | | None MIP 1100 Series, Effects of Conjugate Imagery Loss: Mission 1107 | | 1108 | | S0242 Evaluation, Mission 1108 | TOP SECRET RUFF Handle Via Tatent-RETHOLE Control System Boly #### GLOSSARY OF TERMS ALTITUDE Vertical distance from the vehicle to the Hough Ellipsoid at the time of exposure. APOGEE That point in an elliptical orbit of a satellite at which the distance is greatest between the orbiting body and the surface of the Hough Ellipsoid. BINARY TIME WORD Binary presentation of the accumulated system time. DATE OF PHOTOGRAPHY Day, month and year (GMT) that the photography was acquired. DISIC Dual Improved Stellar Index Camera. ECCENTRICITY A measure of the deviation of an ellipse from a true circle; expressed by dividing the distance between the foci of the ellipse by the length of its major axis. EXPOSURE TIME Time during which a light-sensitive material is subjected to the influence of light, expressed in this text in fractions of a second. Formula: Exposure time (sec) = slit width (in) scan rate (radians per sec) FIDUCIAL MARK A standard geometrical reference point imaged within the frame of a photograph. The intersection of the primary fiducial marks usually defines the intersection of the principal ray with the focal plane. FOCAL-LENGTH (CALIBRATED) Adjusted value of the equivalent focal length. Computed to distribute the effect of lens distortion over the entire field. FOCAL LENGTH (EQUIVALENT). Distance measured along the lens axis from the rear nodal point to the plane of best average definition over the entire field. Points other than the rear nodal point may be used but must - vi - TOP SECRET RUFF Handle Via Talent-REVNOLE Centrol System Boly #### Handle Via -- Telent-KEYHOLE --Centrel System Only # TOP SECRET RUFF be specified for correct interpretation of data. FOCAL PLANE Plane perpendicular to the lens axis, in which images of points in the object field of the lens are focused. **FORMAT** The portion of the frame that contains imagery produced by the primary optical system of the camera. FRAME* A single exposure which contains the format and peripheral border information relevant to the format. GENERATION Number of reproductive steps by which a negative or positive photographic copy is separated from the original scene, ie., the original negative is generation one, a positive made from the original negative is generation two, etc. GROUND RESOLUTION* The minimum distance (expressed as bar plus space) between two adjacent linear features which can be detected by a photographic system, as determined from standard three bar resolution targets. A target is considered to be resolved when a grouping of three bars can be distinguished as three distinct lines. HOUGH ELLIPSOID A reference ellipsoid around the earth having a semi-major axis of 20,925,738.18 feet and a semi-minor axis of 20,855,588.20 feet. IMAGE MOTION COMPENSATION (IMC) A correction made to compensate for relative image motion at the camera focal plane. INCLINATION The angle between the orbital and equatorial planes measured counterclockwise from the equatorial plane to the orbital plane with the exceeding node as the vertex. INTERPRETABILITY (PHOTOGRAPHIC) Suitability of the imagery with respect to answering requirements on a given type of target. Various factors such as halation, uncompensated image motion, poor contrast, incorrect focus, * Naudie Via Tolent Krymors Control System Dely # TOP SECRET RUFF NO PROFICAL DICCEM improper film processing, atmospheric conditions (both natural and mammade), ground resolution, and insufficient natural or artificial lighting of the target affect interpretability. The 3 levels of interpretability are: Poor (P) - Unsuitable for adequately answering requirements on a given type of target. Fair (F) - Suitable for answering requirements on a given type of target but with only average detail. Good (G) - Suitable for answering requirements on a given type of target in considerable detail. A framing camera used to record terrain imagery. The product is used for relative orientation and mapping purposes. Time of day computed from the position of the sun relative to the imaged terrain. A pre-exposed pre-professed film strip (approximately three feet long) that is detected by teleretry when it passes through the panoramic camera. This strip is generally spliced between two different film types to signal the film change. A continuous line imaged along the major axis of each frame to define the optical axis of the lens relative to any given instant of exposure. Images of the rail holes associated with the pan geometry calibration of the namera. Photographs a partial or complete panorama of the terrain in a transverse direction through a scanning motion of the lens system. Photographic portion of an orbital revolution. A prefix "D" indicates the descending node, a prefix "A" indicates the ascending node, and a. INDEX CAMERA LOCAL SUN TIME MATERIAL CHANGE DETECTOR (MCD) NODAL TRACE PAN GEOMETRY DOTS PANORAMIC CAMERA **PASS** viii TOP SECRET RUFF Handle Via--Tolent-RETHOLE-Control System Only Kandle Via - Tologt KEYMOLE Control System Only ## TOP SECRET PUFF - NO FOREIGN DISSEM prefix "M" indicates a continuous camera operation from the ascending node through the destending node. An additional suffix "E" indicates that the associated photography was generated for engineering purposes. PERIGEE That point in an elliptical orbit of a satellite at which its distance is nearest the surface of the Hough Ellipsoid. F39.IOD The time required For a satellite to complete one revolution about the earth. **PITCH**
Rotation of the camera about its transverse axis. Positive pitch indicates nose up attitude. PRINCIPAL RAY That ray of light which emanates from a point in object space and passes indeviated through the centers of curvature of the lens surfaces. It is coincident with the optical axis of the lens. RELATIVE ORIENTATION The determining (analytically or in a photogrammetric instrument) of the position and attitude of one of a pair of overlapping photographs with respect to the other. RESOLUTION Measure, expressed in lines/mm, of the smallest array of point objects distinguishable as independent point images. RCLL Rotation of the camera about its longitudinel axis. Positive roll indicates let wing up attitude. SCLAR ELEVATION The angular distance to the sun measured from a plane tangent to the earth at the intersection of the principal ray of the camera and the earth. STELLAR CAMERA A framing camera which records stellar images. The product, in conjunction with the product of the Index camera, is used for attitude determination. UNIVERSAL GRID An X - Y coordinate system used to define image location on photographic formats. - 1x - TOP SECRET RUFF Radio Via TSIVET-REVEOLE Control System Buly Handle Via Tolont KEYMALF Centrol System Buly # TOP SECRET- RUFF •VEHICLE GROUND TRACK AZIMUTH Clockwise horizontal angle measured from the longitudinal meridian's intersection of the earth's surface to the vehicle's ground track. VIGNETTING Gradual reduction in density of parts of a photographic image due to the stopping of some of the rays entering the lens. YAW Rotation of the camera about its vertical axis. Positive yaw represents nose left attitude, as viewed from top of the camera. TOP SECRET RUFF Handle Via Taleut-KERMALE Control System Baly ^{*} Defined differently than in the Glossary of NPIC Terminology. # TOP: SECRET RUFFNO FOREIGN DISSEM #### SYNOPSIS Mission 1108, a two-part satellite reconnaissance mission, was launched at 2138Z on 4 December 1969. The first capsule was recovered dry during rev 115 at 2355Z on 11 December 1969. The air catch of the second satellite reentry vehicle on rev 277 at 2300Z on 21 December 1969 terminated the mission. A total of 90 photographic passes was acquired by the 18-day mission. The image quality of the foward-looking camera record is more variable than that of the aft-looking camera. Out of focus imagery (soft spots) and instances of image smear in the scan direction can be detected on the forward-looking camera material. In general, the image quality of the forward-looking camera record is fair, while the image quality of the aft-looking camera product is good. The imagery provided by the forward camera has a "soft" appearance at magnifications of 50% and above; however, the best imagery of the mission was selected from this record. An MIP rating of 105 and one of 100 are assigned to Missions 1108-1 and 1108-2 respectively. Approximately 85 percent of the mission contains cloud free photography. The Dual Improved Stellar Index Camera failed to operate after frame 73 of pass 204. The mission carried an 811-foot tag end of film type S0-242 (aerial color film) on the aft camera supply. Detailed analysis of this color material is included in this report as a special study. - 1 - SECRET RUFF Talent-KETHOLE Control System Only ### PART I. GENERAL SYSTEM INFORMATION #### A. Camera Numbers | Forward-Looking Panoramic Camera | 317 | |----------------------------------|-----| | Aft-Looking Panoramic Camera | 316 | | DISIC Camera | 12 | ## B. Launch and Recovery Dates | | • | (<u>1108-1</u>) | (<u>1108-2</u>) | |---------------|---|-------------------|-------------------| | Eaunch | | 4 Dec 69/2138Z | * | | Recovery Rev | | 11 Dec 69/2355Z | 21 Dec 69/2300Z . | | | | | 1 \ -11 | #### C. Orbit Elements | • | Actu <u>al**</u>
1108-1 | Actual** (| • | |--------------------------|----------------------------|------------|--------------------| | Element | (Rev 9) | (Rev 113) | Photo Range | | Period (min) | 88.448 | 88.439 | * | | Perigee (nm) | 82:423 | 94.969 | 81.169 (Pass D48) | | Apogee (mm) | 143.358 | 134.957 | 107.073 (Pass D14) | | Eccentricity | 0.00821 | 0:00520 | * | | Inclination (deg) | 81.49 | 81.49 | , * | | Perigee Latitude (Geod.) | 27°25' N | 34° 17'N | * | ^{*} Not applicable ^{**} This data reflects the orbital elements for only the indicated revolution, not the entire mission segment. #### D. Photographic Operations ### 1. Panoramic Cameras: | • | 110 | 08-1 | 11 | 08-2 | . T e | otal | |--|-----------------------------|---------------------------------|------------------------|---|-------------------------|--| | <u>Type</u> | Revs | Frames | Revs | Frames | Revs | Frames | | Operational - | • | | | | | | | Fwd | 31 | 2,586 | 45 | 2,922 | 76 | 5 ,5 08 | | Aft | 31 | 2,591 | 43 | 2,796 | 74 | 5,387 | | Operational/Domestic | | , t | | | | | | Fwd | 3 | 183 | 1 | . ग्रेग | 4 | 227 | | Aft ' | 3 | 184 | \$ | 70 | 5 | 254 | | Domestic | | | | | | | | Fwd | 3 | 6 8 | 6 | 125 | 9 . | 193 | | Aft ` | 3 | , 68 | 7 | 128 | 10 | 196 | | Engineering (no imagery) | | . : | | - | | | | | 0 | 0 | ļ. | 6 | -1 | · 6 | | Aft | 0 | 0 | 1 | 6 | 1 | 6 | | TOTALS | | • | • | | | | | Fwd | 37 | . 2,837 | 53 | 3,097 | 90 | 5,934 | | Aft | 37 | 2,843 | 53 | 3,000 | 90 | 5,843 | | Aft Operational/Domestic Fwd Aft Domestic Fwd Aft Engineering (no imagery) Fwd Aft TOTALS Fwd | 31
3
3
3
0
0 | 2,591
183
184
68
68 | 43
1
2
6
7 | 2,796
44
70
125
128
6
6 | 74
4
5
9
10 | 5,387
227
254
193
196
6 | #### 2. Secondary Cameras: | Came | re | |------|----| |------|----| #### Steliar (1108-1) Index (1108-1) Stellar (1108-2) Index (1108-2) #### Frames 2,150 Starboard; 2,145 Port 2,156 2,013 Starboard; 2,007 Port 2,025 Mazzid Holden Per #### E. Film Usage | Camera | Film Load (Total) | Pre-Flight Footage | Processed ** Footage | Film
Type | |----------------------|-------------------|--------------------|----------------------|--------------| | Fwd-Looking (1108-1) | *16,300 | 538 | 8,005 | 3404 | | Aft-Looking (1108-1) | ·*15,200 | 540 | 8,018 | 3404 | | • | 800 Re | covered with | second bucket. | SO-242 | | Fwd-Looking (1108-2) | KA | NA | 8,175 | 3404 | | Aft-Looking (1108-2) | KA _ | NA | 7,088 | 3404 | | | | NA | 819 | so-242 | | Stellar (1108-1) | *2,000 | 53 | 637 | 3401 | | Stellar (1108-2) | ŇΑ | NA | 542 . | 3401 | | Index (1108-1) | *2,200 | 71 | 1,019 | 3400 | | Index (1108-2) | ÑΑ | NA. | 1,095 | 3400 | ^{*} Total load for both buckets. - 4.-7 TOP SECRET RUFF Nandle Via **Talent:RETHOLE** Control System Daly ^{**} Values include pre-flight footages. NA - Not applicable. #### PART II. CAMERA OPERATION - A. Fwd-Looking Panoramic Camera: Operational throughout. - B. Aft-Looking Panoramic Camera: Operational throughout. - C. Horizon Cameras: Operational throughout the mission; however, an extra port horizon image is present with frame 35_of pass D95. It is overlapped to a small extent with the starboard horizon image associated with frame 34 of pass D95. No fiducials are present with this extra horizon. This minor overlap condition does not interfere with normal horizon are measurement. - D. Stellar Cameras: Failed to operate after frame 73, pass 204. This failure is apparently associated with a malfunction in the electronics system. - E. <u>Index Camera</u>: Failed to operate after frame 73, pass 204. This failure is apparently associated with a malfunction in the electronics system. - 5 - Randle Via -- Tolert-REVROCE Control System Only ## PART III. IMAGE ANALYSIS # A. Fwd-Looking Panoramic Camera - 1. Density: Ranges from thin to heavy. - 2. Contrast: Generally medium. - 3. Image Quality: Variable. Instances of image smear in the scan direction and severe out-of-focus imagery are apparent intermittently throughout the mission. The image smear appears to be associated with exposure duration (slit width) and is more severe at the takeup end of the format than at the supply end. Image smear is not observable where terrain illumination level permitted the use of narrow exposing slits. The out-of-focus area is located approximately 10 inches from the takeup end of frames 3 and 4 of most passes. The amount of image degradation is directly associated with the length of sit time between passes. On passes with sit times of one revolution, the out-of-focus imagery is less severe and is difficult to detect. At least two revs between operates are necessary for consistent detection. The cause of these out-of-focus areas is directly associated with small diameter rollers in the extended film path transport assembly and constant tension assembly. Extended inoperative periods tend to impress these rollers into the payload, causing the material to be deformed. This deformation is retained during the photographic scan resulting in out-of-focus imagery at these points. In general, the imagery provided by this camera has a "soft" appearance at magnifications of 50% and above; however, the best imagery of the mission was selected from this camera record. # 4. Imaged Degradations: #### a. Light Leaks: (1) A fog pattern is present on the fourth frame from the end of all camera operations. The density of this fog pattern is commensurate with camera sit periods. After a three-rev soak, fog density in the original negative measured 1.1 above base plus fog level. This light leak appears to originate in the camera drum and is imaged on the material at the camera exit roller (see Graphic #1, page 10). #### NO FOREIGN DISSEM- - (2) Two minor circular fog patterns are present near the takeup end of the first frame of some passes of the second-bucket material. - b. Static Traces of dendritic static are present on both
film edges intermittently throughout the second-bucket material. - c. Other See image quality. #### 5. Physical Degradations: - a. Numerous comet-shaped minus density spots are present intermittently throughout the first part of the mission. This anomaly apparently occured in film manufacturing since the head/tail orientation of the comets reverse between manufacturing splices. - b. Several very fine, continuous emulsion scratches are present throughout the mission. - c. A minus density line with parallel plus density bands appears intermittently throughout both fwd and aft records of both buckets. These bands generally appear at a bias, are referenced to the film width, and extend across the width of the film. The bands sometimes have a brownish appearance, apparently associated with film manufacturing. ### B. Aft-Looking Panoramic Camera - 1. Density: Same as the fwd-looking panoramic camera record. - 2. Contrast: Same as the fwd-looking panoramic camera record. - 3. Image Quality: Although the best imagery of the mission was selected from the fwd-looking camera, the image quality of the aft-looking camera record is less variable. In general, the imagery can be viewed at 50% magnification without the noticeable loss of quality apparent on the fwd-looking record. The overall performance (image quality) of the aft-looking camera is rated as good. #### 4. Imaged Degradations: a. Light Leaks - A minor, splash-like fog pattern is present on the first frame of passes acquired on the second bucket after an extended camera sit period (see Graphic #3, page 10). THE FOREIGN DISSEM - b. Static Traces of dends tic static are present on both film edges intermittently throughout the second bucket material. - c. Other None noted. - 5. Physical Degradation: - a. Several fine longitudinal emulsion scratches are present intermittently throughout the second bucket material. - b. See item c Section A5, p 7 (Panoramic Camera Physical Degradations). - c. A heavy diagonal crease with associated emulsion lifts, and plus density marking extends approximately 15 inches into the format on frame 47, pass D199. Imagery in the area of the crease indicates this anomaly occurred after photographic scan and apparently during the defilming and presplice operations. #### C. Stellar Cameras - l. Density: The density of the starboard stellar record is generally medium. The density of the port stellar record is also generally medium, but it is somewhat lower in density than the starboard camera record. The density of both the port and starboard records is adequate for the detection of stellar images: - 2. Contrast: Adequate for the detection of stellar images. - 3. Image Shape: Point-type star images were recorded on both stellar camera records. - 4. Images Per Frame: - a. Mission 1108-1 6-10 (starboard), 8-15 (port) - b. Mission 1108-2 15-25 (starboard), 6-12 (port) - 5. Imaged Degradations: - a. Light Leaks None noted. - b. Static: - (1) Static marks apparently induced by the pressure plate appear in the format of many port frames throughout the mission. - 8 - -NO CORFIGN DICCEM (2) Severe dendritic and corona static traces are present at random throughout the last 50 feet of the first bucket and the entire second bucket stellar record. #### c. Other: - (1) A plus density flare-type marking is present in some starboard formats from both mission segments. The marking affects approximately 8 percent of the format area. Star images are present within the flare area. This flare is apparently caused by a minor sunlight reflection during some operations and has not been observed on previous missions. - (2) Several minus density spots which appear to be caused by obstructions on the reseau plate are present on all port and starboard frames throughout the mission. - 6: Physical Degradations: The characteristic skew bead roller markings are present on both film edges of the stellar record. #### D. Index Camera - 1. Density: The density of the index record ranges from thin to heavy with the major portion in the medium-to-heavy category. - 2. Contrast: Generally medium. - 3. Image Quality: The index photography is generally good and compares favorably with index-photography from previous missions. - 4. Imaged Degradations: - a. Light Leaks None noted. • - b. Static Static traces appearing as wavering plus density lines are present intermittently shroughout the second-bucket index record. - c. Other Several minus density spots apparently caused by obstructions on the reseau plate are present throughout the mission. - 5. Physical Degradations: The characteristic skew bead roller markings are present on both film edges of the index record. -NO-FOOTION-DISSEM ## E. <u>Graphic Display</u> The patterns illustrated below are referenced in the text of this report. | | n frame from end of camera operate (Bucket) fwd) DATA BLOCK • | | • | <u> </u> | |------------------|---|-------------|----------|----------| | | | | | | | | | 4 | • | 1 \ ! | | 1/ 1 | | | | - · \ | | V. L | | | | U | | | | | | | | | | SERIAL NO | • | | | | • | | | | | anhic 2 Fourth | frame from end of camera operate (Bucket 2 fwd) | • | | • | | орине | | - | | | | | DATA BLOCK | | | | | | | | | <u> </u> | | | | • | | 1 1 1 | | -1/ | | | | 1 ' \ 🛉 | | . V. | • | | . 4 | J | | | | 100 | | | | • . | | SERIAL NO | ` | | | onhice 3 First (| frame of camera operate (Bucket 2 aft) | - | . ' | | | aprilic - a a a | | | | - | | | DATA BLOCK | | <u> </u> | | | <u> </u> | | | | | | 1/ | | | • | 1 \ 1 | | 17. | | | | () | | ソ : | | | | l VI | | | | | | | | | | SERIAL NO | | | - 10. - TOP SECRET RUFF Handle Viz Talant-KEYMRIF Control System Only #### PART IV. EMAGED AUXILIARY DATA #### A. Fwd-Looking Pancramic Camera - 1. Horizon Cameras: - a. Starboard-Looking: - (1) imagery Imaged properly. - (2) Fiducials Sharp and well-defined. - t. Fort-Looking: - (1) Imagery Imaged properly. - (2) Fiducials Sharp and well-defined. - 2. Frequency works: Imaged properly. - 3. Binary Time Word: Sharp and well-defined. - -. Camera Number: Feadable. .. - 5. Fan Jeometry Dots: Sharp and well-defined. - 6. Fan Jeometry Traces: Sharp and well-defined. # 3. Aft-Looking Panoramic Camera - Howizon Cameras: - a. Starboard-Locking: - (1) Imagery Image: properly. - (2 Fiducials Sharp and well-defined. - c. Fort-Sooking: - / Imagery Imaged properly. - (2) Fiducials Sharp and well-defined. #### Handle Via - Talent KÉYHOLE Control System Only #### TOP SECRET RUFF -NO-FOREIGN-DISSEN - 2. Frequency Marks: Imaged properly. - 3. Binary Time Word: Approximately 35 percent of the data bits on the aft-looking camera record are bloomed with each data block exposure throughout the mission. The data bits are within size specification; however, no attempt was made to automatically read the time words since the tape recorder data provided all necessary time correlation. The data block is used only if a tape recorder failure occurs. - 4. Camera Number: Readable. - 5. Fan Geometry Lots: Sharp and well-derined. - 6. Pan Geometry Traces: Sharp and well-defined. #### C. Stellar Cameras - 1. Grid Image Quality: Sharp and well-defined. - 2. Binary Time Wori: Imaged properly. - 3. Lens Serial lumber Legibility: Good. #### D. Index Camera - 1. Grid Image Quality: Sharp and well-defined. - 2. Binary Time Word: Imaged properly. - 3. Camera Number Legitility: Good. Handle Via ... <u>Talent-KEYHOLS</u> Control System Only # TOP SECRET RUFF MO-FOREIGN-DIEGEM PART .. MENSURATION QUALITY The image quality of Mission 1108 is considered good for mensuration purposes. There were 68 requests for mensuration on this mission, No problems were encountered. - 13 - TOP SECRET RUFF Randle Via Teleot-USYAME.a. Control System Baly #### PART VI. FILM PROCESSING # A. Processing Machines and Process Gamma | Camera | Machine | Average
<u>Gamma</u> | Type | |---|---|---|--| | Fwd (1108-1) Aft (1108-1) Fwd (1108-2) Aft (1108-2) Stellar (1108-1) Stellar (1108-2) Index (1108-1) Index (1108-2) | Yardleigh Yardleigh Yardleigh Yardleigh Grafton Trenton Trenton Lrape Lrape | 1.87
1.98
1.86
1.92
%/A
2.15
2.24
1.79
1.30 | 3404
3404
3401
3401
3401
3400
3400 | N/A - Not available. ### B. Processing Techniques 1. Panoramic Cameras: The black and white portion of both panoramic camera records were processed using the Yardleigh dual gamma process. The color portion was processed in the Grafton machine. #### 2. Secondary Cameras: - a. Stellar Cameras The stellar camera records were processed with a Trenton processor at a single level of development. - b. Index Camera The index camera records were processed with a Drape processor at a single level of development. ## C. Film Handling Summary # 1. Primary Cameras: - a. Capsule Defilming The primary camera records were defilmed on the West Coast and received at the processing site in suitcases. - b. Pre-processing Inspection No major problems were encountered; however, the West Coast labels for the bucket one major camera suitcases caused some confusion. The problem was rectified on the second bucket. _ 1k _ TOP SECRET RUFF Handle Via Targut-REVIOLE Control System Boly NO FORMON-DISSEM .c. Manufacturing Splices: | Fwd-Looking Camera | Art-Looking Camera | |--------------------|------------------------| | 1400 200,/- | Pass D37, fr 73 | | Pass D71, fr 14 | Pass D89, fr 85 | | Pass D151, fr 109 | Pass D167, fr 98 | | Pass D176, fr 21 | Pass D199, fr 52 | | Pass D216, fr 23 | Pass D242, fr 27 & 28* | - d. Processing Anomalies None - e. Breakdow No problems encountered. - 3. Secondary Cameras (Stellar and
Index): - a. Capsule Defilming The secondary camera records were defilmed on the West Coast and received at the processing site in suitcases. - b. Pre-processing Inspection No problems encountered: - c. Manufacturing Splices Rev 138, fr 8 on the index camera record only (ultrasonic splice). - d. Processing Anomalies None - e. S/I Correlation No problems encountered. ^{*} Material-change detector splices. NO POREIGN - DISSEM # D. <u>Timetable</u> | <u>Film</u> | Recovered | Received at Processing Site | Spec.
Shipment
at NPIC | Priority 1A at NPIC | |------------------------------|---------------------|-----------------------------|------------------------------|---------------------| | Fwd (1108-1)
Aft (1108-1) | 11 Dec 69/
2138Z | 12 Dec 69/
1950Z | None | 14 Dec 69/
2100Z | | Steliar (1108-1) | '. н | n | , tt 🦖 | n | | Index (1108-1) | 11 | 17 | 11 | .11 | | Fwd (11/9-2)
Aft (1108-2) | 21 Dec 69/
2300Z | 22 Dec 69/
1855Z | 11 | 25 Dec 69/
00572 | | Stellar (1108-2) | tf | 11 | | ** | | Index (:108-2) | ** | | , tr | 11 | _NO FOREIGN DISSEM, #### A. PI Statistics #### 1. Target Coverage: | • | 1108-1 1108-2 Total | |-------------------------------|---| | Priority 1 Targets Programmed | No specific priority l targets were programmed on this mission although specific areas were selected for initial readout. | | Priority 1 Targets Covered | 144 177 321 | #### 2. Photographic Interpretability Ratings: | , | Rating | Missiles | Nuclear
Energy | Airbase
Facili-
ties | Ports | Industry | Ground
force
Facili-
ties | Logis-
tics | Miscel-
laneous | |---|--------------|-----------|-------------------|----------------------------|----------|--------------------|------------------------------------|----------------|--------------------| | • | Good | 13 | 7 | 19 | 0 | 2 | . 18 | 0 | 6 | | | Fair
Poor | 65.
31 | 0 | 44
18 | 15
23 | 17
11 -/ | / 63
/ 17 | 13
5 | 26
4 | | | TOTALS* | 109 | 15 - | 81 | 38 | 30 | 98 | 18 | ¨ 36 | # 3. Summary of PI Ratings (percentage): Good 65 or 15% Fair 251 or 59% Poor 109 or 26% ^{*} A discrepancy can exist between the total number of targets covered and the total PI reports because some targets are covered more than once. -NO-FOREIGN-DIECEM #### B. PI Comments 1. Atmospheric Attenuation: Listed below is the photointerpreters' report of weather conditions for Priority 1 targets covered on this mission. | a. | Clear | 366 | or 86.1% | |----|--------------|-----|----------| | b. | Scattered | 19 | or 4.5% | | | Clouds | _ | | | c. | Heavy Clouds | 4 | or 0.9% | | d. | Haze | 34 | or 8.0% | | e. | Cloud Shadow | ັ້ວ | 0.5% | # 2. Product Interpretarility: The PI suitability of the black and white record ranges from fair to good. The reduction in scale because of higher-than-normal mission altitude after Pass D40 reduced the effectiveness of this mission. The PI suitability of the color record is poor (see SO-242 Special Study in this report). PART VIII. RESOLUTION TARGET DATA There were no Resolution Targets used during this mission. - 19 - HO-PEREIGH DISSEM Handle Via Tolock SEXMALE Control System Only PART IX. MISSION 1108 DATA | I | OIV | ard | l-I | ook | ine | |---|-----|-----|-----|-----|-----| | | | | | | | Aft. | | • | | | | |--------------------------------------|-----------------------|-------------------|--------------------|---------------------| | | A
Pan | Takeup
Horizon | Supply
Horizon | •
Pan | | Camera Number | 317 | * | w. | 226 | | Reseau Number | * | * | * | 316 | | Lens Serial Number
Slit Position/ | I-200 | 23780 | 237 ⁸ 1 | *
I - 195 | | Slit Widths (in.) | 1/0.141 | • | • | 1/0.084 | | | 2/0.214 | | | 2/0.004 | | .• | 3/0.274 | * | * | 2/0.140 | | | 4/0.334 | | * | 3/0.185 | | • | FS/0.237 | | | 4/0.289 | | Aperture | * | F/8.0 | 7/6 0 | FS/0.154 | | Exposure Time (sec) | Variable | | F/6.3 | * | | Filter (Wratten) Primary | W-25. | 1/100 | 1/100 | Variable | | Alternate | W-25 | W-25 | W-25 | W-21 | | . Focal Length (mm) | 609.752 | # Cl. Oc. | *- | W-2B | | Film Length (ft) | 16 200 | 54.82 | 55.88 | 609.638 | | Splices | 16,300 | * | * | 15,200/800 | | Emulsion | 5
No. 2 /0 22 a | * | * | 6 | | Film Type | 443-1/2 -11- 9 | * | * . | 444-6-11-9/s0-242- | | Resolution Data (L/mm) | 3404 | * | * | 3404 / so-242° | | Static | | 209R/187T | 207R/209T | | | High Contrast | 292 | , | v | | | Low Contrast | 186 | NA . | NA. | 248 | | Dynamic | 100 | NA. | NA | 148 | | I High Contrast | 284 | NA · | | | | I Low Contrast. | 188 | NA
NA | NA | 224 | | P High Contrast | 277 | | NA . | 139 | | P Low Contrast + | 188 | ŊA | NA | 239 | | / | 100 | NA. | NA: | 132 | NA, - Not Available. * - Not Applicable. ⁻ Radial Resolution on Axis. R T - Tangential Resolution on Axis. ⁻ Resolution Tested using a W-25 filter. ⁻ Resolution Tested using a W-21 filter. ## F IX. MISSION 1108 DATA | Aft-Looking | | | | Stellar | | <u>Index</u> · | | |-------------|-------------------|-------------------|-------------------|---------|-----------|----------------|--| | iy
con | • Pan | Takeup
Horizon | Supply
Horizon | Port | Starboard | • | | | | 316 | * | * | | 12 | 12 | | | | * | * | * | 14P | 15 | 109 | | | 1 | 1-195 | 23773 | .23776 | 14P | .15 | . 109 | | | • | 1/0.084 | • | • | | | ٨. | | | | 2/0.140 | | • | | • | | | | | 3/0.185 | * | * | | * / | * | | | | 4/0.289 | | | | | | | | • | FS/0.154 | | • | • | | •* | | | 3 | * | F/6.3 | F/8.0 | -F/2.8 | F/2.8 | F/6.3 | | | Э. | Variable | 1/100 | 1/100 | 1.5 | 1.5 | 1/500 | | | | M-51 | W-25 | W-25 · | None | None | W-12 | | | 3 | W-2B | * | * ` | '₩ | * | * | | | 3 | 609.638 | 54.93 | NA . | 76.2 | | 76.2 | | | | 15,200/800
6 | * . | * | | 000 | 2,200 | | | | _ | * | * | No | | ŀ" | | | • | 3404 / SO-242-271 | * | * | 319-6 | | 202-4-4-9 | | | /209T | 3404 / 50=242 | 11.85 /1.20m | *
30m/2//m | 344 | | 3400 | | | 2031 | • | 148R/132T | 187R/166T | · NA | NA · | 122R/108T | | | | 248 | NA | NA ' | NA | NA . * | ¹ NA | | | _ | 148 . | NA | NA
• | NA | NA . | NA · | | | • | 224 | ŊA. | NA | NA | Na | NA . | | | • | 139 | ŇA | NA , | NA | NA . | NA | | | | 239 | NA- | NA | NA | na" · · | NA | | | | 132 | NA . | NA | NA | ŇA | NA | | PART X. MISSION INFORMATION POTENTIAL (MIP) HISTORY, 1100 SERIES | Mission | MIP# | Pass | Frame ' | Universal | Grid Coord | |-----------------|--------------|-------------|----------|-----------|------------| | 1101 | 85 | D159 | 2 fwd | 39.0 | 1.5 | | *1102 | 90 • • | D16 | 22 fwd | 26.8 | 1.3 | | 1103 | 90 | D 79 | 15 fwd · | 41.8 | 3.8 | | +11 04 . | 115 | D16 | 6 fwd | 33.1 | 4.1 | | .+1105 | 95 | D16 | 20.aft | 47.3 | 1.2 | | *1106 | 110 | D32 | 8 fwd | 17.9 | 1.8 | | 1107-1 | 95 | D122 | 30 aft | 43.7 | 2.4 | | 1107-2 | 95 ` | D170 | 20 aft | 42.1 | 2.9 | | 1108-1 | ,1 05 | D30 | 20. swa | 28.7 | 0.5 | | *11 08-2 | 100 | D242 | 20 fwd | . 33.3 | 2.3 | - Standards - 21 - TOP SECRET RUFF Handle Via Tology SETBOLS— Coatrol System Buly FIGURE 1. BEST IMAGE QUALITY (MISSION 1106-1) . The following figure is an example of the best imagery from this mission. FIGURE 2. . BEST IMAGE. QUALITY (MISSION 1108-2) The following figure is an example of the best imagery from this mission. 22a TOP SECRET RUFF Tareve-nermous. Tareve-nermous. Tareve-nermous. #### Haedle Via Telest KEYHÖLE Centrol System Only # TOP SECRET RUFF | | Figure 1 . | Figure 2 | |---|----------------------|-------------------------| | Camera | 317 | 317 | | Pass | D30 | D5/15 | | Frame | 20 | 20 | | Date of Photography (GMT) | 6 Dec 69 | 19 Dec 69 | | Universal Grid Coordinates (x-y) | 28.7-0.5 | 33-3-2-3 | | Enlargement Factor | 20 X | 20 X | | Geographic Coordinates (format center). | 43° 11'N
70° 32'W | 34° 29' N
112° 23' W | | Altitude (ft) | 500,803 | 606,491 | | Camera Attitude: | | | | Pitch (deg) | 16.1399 | -15.0000 | | Roll (deg) | 0.0057 | 0.0000 | | Yaw (deg) | 0.5319 | 0.0000 | | Local Sun Time | 1315 | 1125 | | Solar Elevation (deg/min) | 21/45 | 31/46 | | • | ₹ . | · | | Exposure (sec) | 1/307 | 1/292 | | Filter | W/25 | W/25 | | Vehicle Ground Track Azimuth (deg/min). | 170/43 | 172/36 | | Processing | Dual Gamma | Dual Gamma | - 22b - TOP SECRET RUFF Handle Via Talent KEVHOLE Control System Daly Mandle Via Talent-MC+MULE Control System Only TOP SECRET - RUFF Handle Von Talent Exyment Control System Only TOP SEURET - KUFF Nandle Via Talent-Retribut Control System Only Handle Via Talian Prymale Control System Boly Handle Via Talent KEYHOLE Control System Daly ### TOP SECRET RUFF -NO-FOREIGN-DISSEM # TABLE OF CONTENTS | | | Page | |-----|--|----------| | ı. | INTRODUCTION | 1A | | II. | EXPERIMENT CHARACTERISTICS AND CONSIDERATIONS | 2A | | | A. Mission Profile" B. SO-242 Characteristics | 2A
7A | | III | PHOTOINTERPRETATION REPORT | 16A | | | A. First Phase Readout Analysis. B. Second Phase Readout Analysis. C. Third Phase Readout Analysis. D. Specific Intelligence Requirement. | 18A | | IV. | QUALITY ANALYSIS | 20A | | . • | A. Color Quality | 21A | | ٧. | OBSERVATIONS AND CONCLUSIONS | 23A | | ντ | PECOMMENTA TIONS | O) a | MAZZIGH-DISSEM ### GRAPHIC ILLUSTRATIONS | | refe | |--|------------------------| | GRAPHICS la AND 2a. SO-242 COLOR COYERAGE PLOTS, MISSION 1108-2 GRAPHIC 3a. CROSS SECTION OF
SO-121 AND SO-242. GRAPHIC 4a. MICROTOMES OF SO-121 and SO-242. GRAPHIC 5a. FILM/SYSTEM RESOLUTION CAPABILITY. GRAPHIC 6a. FILM SENSITIVITY COMPARISON. GRAPHIC 7a. SPECTRAL SENSITIVITY OF SO-121 and SO-242. GRAPHICS 8a AND 9a. SO-242 PROCESS CONTROL CURVES. | 8A
9A
11A
12A | | | | ### PHOTOGRAPHIC ILLUSTRATIONS | Target) | | |---|------| | FIGURES OF ALM 48. COLOR HILLISTRATIONS (Applicants to the the second | | | Nesource Assessment! | 004- | | TIGORES JA AND OL. 3404 AND SO-242 COMPARTSON (Rest One) :+ of | | | Color) | 20Ac | | TIOUNDO LE AND ON, SAUL AND SOLOUS COMPANTANT | • | | (General Application) | | | (General Application) | 22AB | | | | - iiA - TOP SECRET RUFF Handle Via Taleut-REVNOLE Control System Only #### I. INTRODUCTION The goal of this satellite reconnaissance program is to provide the customers with the best possible photographic information base available. Thus far in the program black/white film has served to meet this objective. However, recent advancements in color technology certainly indicate that additional benefits may be realized above and beyond those provided by black/white photography. For example, substantial improvements have been incorporated into the manufacture of SO-242 color film. The film load of Mission 1105-2 was partially composed of SO-242 color material in addition to the regular black/white film supply. Two reasons for using the color were (a) to investigate the capabilities of SO-242 with respect to this system, and (b) to satisfy a specific intelligence requirement. This report presents some of the technical considerations of the experiment and attempts to clarify the National Photographic Interpretation Center's position from an interpretation standpoint on the utility of color photography in this system. Handle Yia Talent-METHOLE Control System Only ### -TOP SECRET RUFF THO PORTION DISSEM ii. Taperiyuu o qeyqueristida ahb obusideratib b The following sections present mission coverage data, characteristics of SQ-242, and comparisons of SQ-242 with SQ-121 and 3404 films. #### A. Mission Profile The last 811 feet (312 frames) of the aft-locking camera film record of Mission 1108 was 50-242 Ektachrome color film. The 50-242 was spliced to the end of the type 3404 black/white material. A material/film change device was used to signal the availability of the color material for exposure and a Wratten 28 filter was automatically inserted into the aft-looking camera eptical path. The color was exposed during acquisitions from frame 28 of pass D242 through frame 2 of pass D274 (end of mission). Suplicate black/white coverage through frame 18 of pass D268 was provided by the forward-looking camera. Pertinent information pertaining to the color portion of the mission and color coverage plots follows. 4m - TOP SECRET RUFF Handle Via Folont NEVHOLE Control System Only COLOR PROFILE DATA # TOP SECRET RUFF NO POREION DISSEM | Frame Date | Date | | Solar
Range | Solar Elevation
Range (degrees) | Exposure Range
(seconds) | Cloud Cover
(Percentage) | Area Photographed
(Remarks) | |---------------|---|-------|----------------------|------------------------------------|--|-----------------------------|------------------------------------| | 9 2 | 19 De | 69 si | | | | • | Last black/white | | 27 | | • | • | | • | ı | Irame
Mission change | | 28-37 | | | 32.8 | . 33.8 | • । | 0 | detector r
USA | | 1-21
22-42 | | U | 29.7 | 32.
53.54 | 4 4
1 1 | | China | | 1-28 | = = | | 23.3 | 27.2 | | 15 | | | 1-57 | = | | 25.55
2.4.50 | | -77
• • | | Colna, Bhutan
USSR, Afghanistan | | 1-22 | | | 8.6 | . n. 7 | 7 | ጸ | | | 71-t
91-1 | | ບໍ | 13.2 | - 15.4
26.5 | ਜੋ ਜ
 | 25 | USSR | | 1-21 | = | | 24.9 | 27.7 | } | | China | | 1-51 | = | | 54.9 | . 27.6 | 1/500 - 1/505 | 90 | USSR, Pakistan, | | | | | • (| | | • | Afghanistan | | 1-12 | = : | | 9 | . 9.2 | 71 - | 52 | USSR | | 18-37 | =
·. | • | 15.1 | . 17.6 | त् | ୡ | USSR | | 1-23 | = | | 9.7 | 6.21 | 1/370 - 1/372 | <u>د</u> | USSR, Poland | | 1-8 | = | | <u>.</u> | . 44.1 | 17/845 - 1/846 | . 52 | USA, Cuba | | 1- 2 | = | •. | ሐ
 | 9 | 1/841 | - | USA (end of mission) | | | 2, 28
1-21
1-21
1-23
1-23
1-23
1-23
1-23
1-23 | | 20 Dec 20 Dec 21 Dec | 19 Dec 69 20 Dec 69 | 20 Dec 69 29.5 - 23.3 - 24.9 - | 19 Dec 69 | 19 Dec 69 | - 3A - FOR SECRET RUFF Handle Via Talent-REVNOLE Control System Only Handle Via -- Taleat-KEYHOLE Control System Daly # TOP SECRET RUFF A summary of the Color Profile Data given on the preceding page is presented below: Passes: 13 Frames: 312 Photographic Days: 3 Solar Elevation Range: 6.8° - 44.1° Exposure Range: 1/359 - 1/846 second Average Cloud Cover Percentage: 20 percent Scale Range: 1/301463 - 1/323062 Altitude Range: 95.6 - 102.5 mm GRAPHIC 24: SO-242 COLOR COVERAGE PLOIS MIN Handle Via Toloot-KEYNOLE Control System Galy #### B. SO-242 Characteristics SO-242 is a color ektachrome reversal film specifically designed for high altitude reconnaissance acquisitions. Three emulsion layers are a deposited on a 2.5 mil estar standard thin base with a protective filter overcoat (transmission characteristics equivalent to a wratten 2B filter) and a clear gel backing. The arrangement of the individual emulsion alayers is unique; ie the green sensitive layer is one top, the red sensitive layer in the middle, and the blue sensitive layer on the bottom (see graphics and microtome illustrations on pages 8A and 9A) The development of SO-242 with the blue sensitive emulsion layer be neath the red and green layers represents an important departure from conventional techniques of color film manufacture. A drawback to this arrangement is the sensitivity of all silver halide emulsions to blue radiation. To circumvent
this sensitivity characteristic, the blue recording emulsion layer is usually placed on top. A blue absorption filter is included above the red and green emulsion layers to restrict penetration of the blue radiation to these emulsions. In SO-242, the sensitivity of the red and green emulsion layers to blue radiation has been restricted sufficiently so the blue sensitive layer can be placed on the bottom. This layer arrangement attempts to optimize the composite characteristics of the film, eye, camera optics, and atmosphere. For example, (a) since the sensitivity and discriminativity of the human eye peak in the green region of the electromagnetic spectrum, it is desirable to record green information where minimal image degradation occurs. This is accomplished with SO-242 by placing the green sensitive emulsion layer on top where light dispersion during exposure and viewing is minimized; (b) the camera optics are designed for best performance in the red and green region of the spectrum; therefore, it is desirable to record the information included within this region where minimal image degradation is encountered; and (c) the atmosphere scatters the short blue wavelengths more than it does the longer green and red wavelengths; therefore the potential information content within the blue region is not as great as that in the corresponding green and red regions. The resolution capability of SO-242 is significantly improved over that of its predecessor, SO-121 (resolution data is listed for SO-242 SO-121 and 3404 on page 10A). This improvement is primarily the result of the more optimum arrangement of the emulsion layers better dyello been ty, and a sacrifice in film speed as compared to SO-121. The decrease film speed is most compatible withithe frace since a film film formation. | Naodle Yia | | 1 00 55 | CRET RUE | Farani | | | |--------------------|--|------------------------|--|--------------|--------|----------------| | Central System Bal | | NO TOP | EIGH AMERIC | | | e | | | | | | | | | | | | | | | | | | | * * * * * * * * * * * * * * * * * * * | | | | | | | \ | - 1 | | | | | | | | GRAPHIC 3a. | CROSS SECT | חפי עם פונו | 121 AND C | n_alia | | | | diminito Jas | OROGO DEC. | TORS OF BU | -121 AW 8 | V-242 | | | _ | | | | | | | | •. | | B | | | | | | . so-121 | Green Sensiti | re Record | —→ Magenta | Dye Layer | | | | | Blue Sensitive Red Sensitive | Record | Cyan Dy | e Layer | | | | | | Base | | | | | | | | Backi | ng | | | | | L | • | | | | | | | F | • | | ع آن اکان ایر د ده دانستان
د ایران استان | | | | | | Green Sensiti | ve Record- | Magenta | Dye. Layer | | | | 50-242 | Red Sensitive
Blue Sensitive | Record | Cyan Dy | e Layer | | | | | Hive Sensitiv | re Record—Base | | Dye Layer | | | | | | Backi | ng · | | | 1 | | . L | | Company of the Company | | 2.14. | | | | | | | | | | | | | | | | 27.75 | | 7.85 60 % | | • | | | | | | | | . • | ** | | | | | | | | • | ***
**** | | | | 1: 1: | | | • | | | | | | | | | | • • • • | 1111 | 410 6 | マル ショニュ | | • | | | 1. | 1 miles | 18 6 | 446 | | | | | | A CONTRACTOR | | | | | | | | | J. M. | 建筑工艺 工 | | | | | | | | | | | | • | | | | | | • | | | | | | | | •• | | | | | | | | • | 1 3 | | | | | | | | | | | | No. | | . 100 | | | The state of s | Taranta and the second | | | | | | | | | 文 | | | The State of | | | | | 第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十 | | 1 | ******* | | | | C. S. C. | BA - | 100 | | SHE | | | | | Free St | U.S. | | Landia VI. | | | | TOD | COLT DUE | | | aloot RETURNED | | • | | | CVETEROL | E A | Conti | el System Bely | NO FOREIGN BUSSEL GRAPHIC 4a. MICROTOMES OF SO-121 AND SO-242 The microtomes on the following photograph pictorially illustrate the arrangement of the emulsion layers of SO-121 (top) and SO-242 (bottom). The film base of both materials is toward the bottom. The layer irregularity present in the SO-121 Microtome is a result of the cut. Note the relative placement and thickness of the yellow dye layer compared to the magenta and cyan layers of SO-121 and SO-242. The magnification factor is approximately 1850X. - 9A - Handle Via Latest FEYHME Control System Only # TOP SECRET RUIT would require the use of a neutral density filter when mixed film loads as used. This was the case on Missions 1105 and 1106. #### FILM DATA COMPARISON* | | Resolving | Power (c/mm) | | Thick | tness | RMS | • | |--------------------------|------------------|------------------------|--------------------|-------------------|-------------------|----------------------|---| | Film | 1.7:1 | 100:1 | AEI | base | total | Granularity** | | | S0-242
3404
S0-121 | 111
220
75 | . 205
680
}- 154 | 3.8
3.5
12.0 | 2.5
2.5
2.5 | 3.5
3.0
3.5 | 38,0
22.3
78.7 | | It was previously stated that SO-242 substantially reduced the resolution gap that exists between color and black/white film. The fact remains however that the resolution restrictions of color film are a limiting factor with respect to its utilization in this system of even though the camera optics are not specifically designed for color acquisitions. The resolution capabilities of SO-242, SO-121 and 3404 are compared to the average system resolution of a second generation Petzval lens in the illustration on page 11A. The sensitivity of the individual emulsion layers of SO-242 and SO-121 are compared in Graphic 7a (page 13A). Notice particularly the sensitivity within the green region of SO-242. Note the absence in this emulsion layer of an extended sensitivity within the blue and near ultra-violet region as compared to the green sensitive emulsion layer of SO-121. ^{* -} Data obtained from film manufacturer's specification sheets and pertinent reports. ^{** -} At 1.0 gross density, 12.7 micron aperture, 45% viewing magnification TOP SECRET - KUTT Handlo Via -Toleet KEYNOLE Control System Baly Rendle Vi: Talent ESTROL Central System Onl 120 TOP SECRET RUFF Graphic 5a. FILM/SYSTEM RESOLUTION CAPABILITY (1.7:1 Contrast Ratio) RELATIVE LOG EXPOSURE -,11A TOP SECRET RUFF Handle Yia, Tulest-MCYNOLS Coatrol System Daly Handle Via Control System Only DE MSI TY Ī.**;**; LOG ESPOSURE MARAIC (a. FILM SENSITIVITY CORPARISON + 12A - TOP SECRET RUFF Handle Via Talent KEYMOLE Control System Uniy ### top secret ruff TNO FOREIGN DISSEM GRAPHIC 8a. PROCESS CONTROL CURVES (HEAD) ~- 14A - TOP SECRET RUFF Handle Via Target-Revious Control System Doly NO ECREICH DISSEM - 15A - TOP SECRET RUFF Handle Via Talent-RETHOLE Control System Buly ## (TOP SECRET RUFI NO-FOREIGN-DISSEM ### III. PHOTOINTERPRETATION REPORT ### A. First Phase Readout Analysis The first phase readout of Mission 1108-2 was initiated by the National Photographic Interpretation Center Photointerpreters (NPIC/PIs) at 0745 on 29 December 1969. This readout was completed two days latef. Throughout this period, the PIs were solicited for their opinions concerning the use of color with respect to their specific functions. The PIs stated that the overwhelming disadvantage of the color is its severe falloff in ground resolution as compared to the black/white material. Some complaints from the PIs are: "Planes identified on black/white cannot be located on color." "Small villages present on black/white cannot be detected on color." "Mountain peaks appear jagged and distinct on black/white but are rounded and smooth on color." The PIs noted numerous instances where items of interest within high priority target areas are present on the black/white record but cannot be detected on the color. For example; tents, tent foundations, aircraft, missiles, missile facilities, fences, tracks, roads, tanks, trucks, pieces of armament and equipment, etc. can be detected and often identified on the black/white material but these objects cannot be detected
or are recorded as blobs on the color material. Handle Via Tolert NETHOLE Control System Unity ### TOP SECRET RUFF -NO-FORMON DISSEM FIGURES 1a AND 2a, 3404 AND SO-242 COMPARISON. The following photographs depict a high priority SAM facility which was photographed in black/white and color. The photointerpreter responsible for the readout of this target during first phase analysis reported that his assessment of the target was handicapped by the loss of information in the color as compared to the black/white material. This illustration is representative of the many instances cited by the photointerpreters in which the poor resolution of the color interfered with their analysis. It is evident from the photographs that the snow-covered terrain placed further restraints on the value of the color photography of this area. · 16Am - Handle Via Falout-RETHOLE Control System Daly # Handle Via Toloot KEYMOLF Control System Only # TOP SECRET RUFF | • | FIGURE 1a | FIGURE 2a | |---|---------------|---------------| | Camera | Pwd ' | Aft | | Pass | D268 | D268 | | Frame | 14 | 20 | | Date of Photography (GMT) | 21 Dec 69 | 21 Dec 69 | | Universal Grid Coordinates | 33.6-3.7 | 41.8-2.8 | | Enlargement Factor | 10 X | 10 X | | Target Location | Eastern USSR | Eastern USSR | | Geographic Coordinates (format center). | 52-28N 24-27E | 52-30N 24-27E | | Altitude (ft) | 610,612 | 609,564 | | Camera Attitude; | | • | | Pitch (deg) | +15.00 | -15.00 | | Roll (deg) | 0.00 | 0.00 | | Yaw (deg) | 0.00 | 0.00 | | Local Sun Time | 1047 | 1048 | | Solar Elevation (deg) | 12*43' | 12*42! | | • | • | | | Exposure (sec) | 1/291 | 1/372 | | Filter | W/25 | M /5B | | Vehicle Ground Track Azimuth (deg) | 167° 55' | 168° 14° | | Processing | Dual Gamma | Mod M-E4 | Handle Via B Handle Via Taluni RETHOLE Control System Only Mandle Via TOP SECRET - RUFF Randle Via Taluat Egymnic Control System Unity -NO-FORSIÓN-DISSEM Forty-one high priority targets were photographed in color during this mission. The PIs readout these targets during the first phase analysis and assigned quality ratings to the coverage record. Analysis of these ratings indicates the importance of at least one high resolution :ecord. Thirty-two targets are covered in stereo with twenty-two rated fair and the remaining ten rated poor. Nine additional targets are covered inmono (color only) and of these, eight are rated poor and one fair. These ratings should not be construed as an indicator of system performance with respect to color. However, they are representative of the degree or extent to which the photointerpreters are able to answer their requirements from the color record. Following is a list of the targets which were photographed in color. The respective quality ratings and weather/terrain conditions are also presented. | * | | | | | |-------------------------------------|--------|----------------|---------|-------------------------------| | Target | Pass | Frame | Quality | Weather/Terrain
Conditions | | Missile Range | D267 | ż 9 | Poor | Haze | | Missile Range
Deployed Strategic | D267 | 23-30 | Poor | Haze | | SSM Facilities | D268 | 21 - 22 | Fair | Gl com | | , H H | D268 | 12-15 | | Clear | | · 11 11 | - D252 | | Poor | Clear snowy | | и и | D268 | 15-19 | Poor | Clear snowy | | | D200 | 2- 4. | Poor . | Scattered clouds . snowy | | н н | D252 | 14-18 | Fair | Clear snowy | | 11 11 | D268 : | 2- 3 | Poor | Scattered clouds snowy | | .н ∘н • | ý268 | 2- 4 | Poor | Scattered clouds snowy | | 17 19 | D252 | 12-16 | Fair | Clear snowy | | ** | D268 | 1- 2 | Poor | Scattered clouds | | ff 9T | D268 | 10-13 | Poor | Clear snowy | | ** ** , | D252 | · · · 2- 6 | Poor | Clear snowy | | ** 11 | D252 | 3- 7 | Poor | Clear snowy | | 11 11 | D268 | 21-22 | Fair | Haze snowy | | | D268 | 17-21 | Fair | Clear snowy | | 11 18 | D268 | 16-20 | Fair | Clear snowy | | # · _ w; | D252 | 6-10 | Fair | Clear snowy | | 11 41 | D268 | 16-20 | Fair | Clear snowy | | n li - | D268 | 7-9 | Fair | Clear snowy | | 11 11 | D252 · | 12-16 | Fair | Clear snowy | | 81 11 | D268 | 1- 2 | Poor | Scattered clouds | | | | | • | snowy | - 17A - TOP SECRET RUFF Randie Via -- Talent-RETROLE Control System Boly | Target . | Pass . | Frame | Quality | Weather/Terrain Conditions | |---|--------|--------------|---------|----------------------------| | Deployed Strategic | | • | | | | SSM Facilities | D252 | 12-16 | Fair | Clear snowy | | n n | D268 | 1- 2 | Poor | Scattered clouds snowy | | !! | D268 | 1- 4 | Poor | Scattered clouds snowy | | # * , # | D268 | 11-14 | Poor | Clear snowy | | | D267 | 9-14 | Poor | Clear snowy | | 11 11 | D252 | 15-19 | Fair | Clear snowy | | Air Base Facilities | D268 | 13 | Fair | Clear snowy | | Logistics | D252 | 17 | Fair | Clear snowy | | Logistics - | D268 | <u>,</u> 4 | Fair | Clear snowy | | Logistics | D264 | 8 . | Fair | Clear | | Nuclear Energy | D249 | 9-12 | Fair | Scattered clouds haze | | , H | D249 | · ц | Fair | Scattered clouds haze | | 11 11 | D249 | 11 | Fair | Scattered clouds haze | | 11 • • • • • • • • • • • • • • • • • • | Ď249 | ц ' / | Fair | Scattered clouds haze | | Weapons Facility | D248 | 1:2 | Fair ' | Clear | | н- н | D264 | 12 ° | .Fáir | Scattered clouds | | 19 19 | D264 | 18 | Poor | Haze | | | D264 | 16 - | Fair | Clear | | · · · · · · · · · · · · · · · · · · · | D264 · | 18 | Poor | Haze - | ### B. Second Phase Readout Analysis The second phase readout of Mission 1108-2 began immediately after the first phase was completed. Readout and quality reporting procedures for first and second phase are nearly identical except that the latter phase concerns targets of lower national priority. The photointerpreters opinions were again solicited as to the effects of color on their requirements. Their statements and quality ratings correlate closely to the first phase results and directly reflect the poor resolution of the color when compared to the black/white material. ### C. Third Phase Readout Analysis Third phase readout is characterized by detailed analysis and reports. It usually involves a basic report on a specific target type and may include a regional geographical or agricultural study. It is within this realm that color photography as provided by this system is expected to contain the greatest potential and application. This expectation is justified by the fact that almost all cloud free frames of the color material provide a tremendous range of tones and hues. The ecological data that could be derived from these clues by trained color analysts is substantial. The NPIC PIs produce a large number of third phase reports; however, because of present-day time restrictions, no third phase work has been conducted with the color from this mission. In addition, the majority of the third phase reports are, by necessity, heavily oriented toward military/industrial complexes where the application of color photography at this resolution level and scale is limited. As requirements expand and color coverage increases, it is inevitable that the application of color will also increase. It is noteworthy that the color resolution limits are generally not as critical to this type of application as they are to first and second phase readouts. ### D. - Specific Intelligence Requirement It was noted in the introduction that one reason for using SO-242 in this mission was to satisfy a specific intelligence requirement. Due to the sensitive nature of the requirement the specifics cannot be openly discussed. The requirement was not oriented to spatial resolution but dependent upon the assessment of the spectral characteristics of a particular geographical area. The color quality of the coverage was considered adequate to satisfy the requirement. - 19A - TOP SECRET RUFF Headle Via Talent-RETROLE: --Central System Only #### IV. QUALITY ANALYSIS Mission 1108 provided the intelligence community with color photography which is superior to any other color photography which has been, received from this system to date. The estimated ground resolution (GR = bar plus space) of the best color imagery is 12 to 15 feet. This compares favorably with the 15-foot ground resolution of Mission 1105: (obtained from SO-121 film) and 15- to 20-foot GR of Mission 1106 (also obtained from SO-121 film). Whereas these resolution figures are empirical estimates, a comparison of the color from Missions 1105, 1106, and 1108 readily illustrates the superiority of the Mission 1108 color. The SO-242 color coverage acquired on this mission does not correspond geographically to the SO-121 color coverage of Missions 1105 or 1106. Therefore, comparisons of identical terrain images are not possible. - 20A - TOP SECRET RUFF Handle Via. Talent REVHOLE Centrel Systèm Only Mandle Via - Tolont KEYHOLE Control System Only ### TOP SECRET RUFF NO SOREIGH DISSEM FIGURES 3a AND 4a COLOR ILLUSTRATIONS The value of color photography to earth resource assessment could be substantial. Soil compositions can often be determined from color clues, as indicated by the reddish color which suggests the presence of iron ore in the area shown in the first photograph. Wind erosion patterns are easily determined from the second photograph. - 20Aa - TOP SECRET RUFF Handle Yia -Taleet-RETHOLE Control System Only # Handle Via Tologo KEVHOLE Control System Only # TOP SECRET RUFF | • | • | | |---|---------------|---------------| | • | FIGURE 3a | FIGURE 4a | | Camera | Aft | Aft | | Pass | D249 | D249 . | | Frame | 24 | 27 | | Date of Photography (GMT) | 20 Dec 69 | 20 Dec 69 | | Universal Grid Coordinates | 28.0-2.7 | 25.0-2.7 | | Enlargement Factor | 3X | 3 X | | Target Location | Central China | Central China | | Geographic Coordinates (format center). | 38-59N 90-54E | 38-33N 90-58E | | Altitude (ft) | 606,038 |
605,614 | | Camera Attitude: | | • | | Pitch (deg) | -15.00 | -15.00 | | Roll (deg) | 0.00 | 0.00 | | Yaw (deg) | 0.00 | 0.00 | | Local Sun Time | 1115 | 1115 | | Solar Elevation (deg) | 27*02* | 27*29' | | Exposure (sec) | 1/819 | 1/819 | | Filter | W/2B | W/2B | | Vehicle Ground Track Azimuth (deg) | 171° 50' | 171° 55° | | | | | Mandle Via Valent RETMOLE Control System Baly Handle Via Handle Via Taluat Province Control System Coly TOP SECRET - RUFF Handle Via Handle Via - Talent KEYHOLE Central System Baly ### TOP SECRET RUFF NO SOBSIGNI PROSEN FIGURES 5a AND 6a - 3404 AND SO-242 COMPARISONS The following photographs illustrate a shortcoming of current reproduction technology. Although the original color material of this specific area was judged to be comparable to the black/white material (this portion of the black/white record was degraded by an out-of-focus condition) the quality of the black/white record as illustrated is better. This difference is attributed to the greater loss inherent in color reproduction techniques. The reader is encouraged to compare this color photograph (judged to be the best obtained on this mission) to the color allustrations included in the Photographic Evaluation Reports of Missions 1105 and 1106. - 20Ac Bandle Via -Tolert KEYNOLE Control System Boly Nandle Via Falent-KCYMOLE Control System Galy Handle Via. Handle Via Halontine invite Control System Galy Bandle Via Control System Buly -NO-FOREIGH DISSEM ### A. Color Quality The color balance and color saturation of the original SO-242 material is adequate for exploitation purposes. A detailed comparison of the original material to the SO-360 reproduction illustrates a vivid loss of dye homogeneity and color distinction capability in the reproductions. This is not objectionable at low magnifications but becomes a real problem at enlargements greater than 20 diameters. The material exposed under ideal weather conditions exhibits a multitude of hues and tonal variations. The objects recorded at "midtone" density level appear faithfully recorded. However, the "D-mins" representing ground-scene highlights often record slightly warm, whereas the "D-maxs" representing ground-scene shadows are shifted toward the cold end of the spectrum -- usually cyan. Most frames acquired during adverse weather conditions (dense haze and clouds) also exhibit a color shift toward cyan. ### B. Density The density of the original color material ranges from generally medium to slightly heavy. Low luminance levels attributed to insufficient solar elevation and unfavorable atmospherics were encountered on several passes. The density of the film from these passes suggests that an increase in exposure would have improved the product. The exposure range, solar elevation, and cloud cover percentage are listed in the Color Profile Section in Part II of this report. The density level of the reproductions is improved over that of the original and is adequate for exploitation purposes. ### C. Color Compared to Black/White The difference in the ground resolution of the color when compared to the black/white material is approximately 2:1 in favor of the black/white. Although there were no resolution targets recorded, empirical estimates from the original film place the best ground resolution of the color at 12 - 15 feet and that of the black/white at 7 - 9 feet. The ground resolution estimates from the reproductions are 18 - 25 feet for the color and 8 - 10 feet for black/white. The result of this resolution difference is clearly apparent in the photointerpretation section (page 16A) of this report. MEETIN NOTES - ON- More than twenty percent loss in ground resolution and information content is evident in the color reproductions (SO-360) when compared to the SO-242 original. This quality difference is readily apparent on photomicrographs of the two materials. Minute detail, required for object separation and identification, is more apparent on the original -the original provides significantly more distinct geometrical information. This difference in quality places added restraints on color photography exploitation and therefore causes the current reproduction material to be unsatisfactory since the photointerpreter is dependent upon reproductions for all first phase and most second phase readout requirements. Because of the loss in image quality attributed to the color reproductions, specialized printing techniques are being investigated. It has been determined that black/white reproductions of the top two emulsion layers (green and red sensitive layers) either singularly or composited are superior from an image sharpness standpoint to the color reproductions. Additional experimentation within this area is being conducted, but the present results justify the following recommendation (considering: NPIC's resolution oriented readout requirements) with respect to future color utilization in this system: The photointerpreter should be provided with an optimum quality black/white reproduction which has been selectively printed from the original color material, and all additional copies should be color reproductions. This combination will provide the interpreter with the best copy from a resolution standpoint, and will insure that any additional benefits which may be derived from color will also be available. Talent-RETHULE-Control System Daily -NO FOREIGN DISSEM ### FIGURES 7a AND 8a. - 3404 AND SO-242 COMPARISON The following photographs demonstrate the added value of color photography when combined with high resolution black/white material. It is evident from these examples that the spectral information provided by the color record will complement the fine detail of the black/white material. 22Aa - TOP SECRET RUFF #### NO COSCION DICCEN | • | FIGURE 7a | FIGURE 8a | |---|----------------|----------------| | Camera | Fwd | Aft | | Pass | D242 | D242 | | Frame | 30 | 35 | | Date of Photography (GMT) | · 19 Dec 69 | 19 Dec 69 · | | Universal Grid Coordinates | 68.3-1.3 | 5.8-4.6 | | Enlargement Factor | 10 X | 10X | | Target Location | Arizona | Arizona | | Geographic Coordinates (format center). | 32-08N 112-01W | 32-18n 112-03w | | Altitude (ft) | 605,374 | 604,861 | | Camera Attitude: | | •. | | Pitch (deg) | +15.00 | -15.00 | | Roll (deg) | 0.00 | 0.00 | | Yaw (deg) | 0.00 | 0.00 | | Local Sun Time | | . 1125 | | Solar Elevation (deg) | 34*09* | 33° 59' | | | | | | Exposure (sec) | 1/293 | 1/451 | | Filter | W/25 | W/2B - | | Vehicle Ground Track Azimuth (deg) | 172° 50' | 172*56' | | Processing | • | Mod ME-4 | TOD CECNET - NUFE Handle Via Handle Via TAB CT TO SELECT Bassie Via Telene Kryunic Centrel System Baly Handle Via Talont-Ervnorr Control System Galy #### VI. RECOMMENDATIONS Mindful of the National Photographic Interpretation Center's primary function, the design purpose of this system, and its scale and ground resolution capabilities, the following recommendations concerning the use of color photography in this system are submitted: - 1. Color be utilized on an experimental basis only with reasonable assurance that the experiment benefits will outweigh the loss of intelligence information which may occur. - 2. Color be utilized if there are direct color-oriented intelligence requirements which fall within the capabilities of the system. - 3. Color be utilized if the ground resolution capabilities of the color are comparable to the black/white capabilities. - 4. Color simulation experiments be conducted in high altitude aircraft missions where practical, unless one of the above conditions can be satisfied.