
C05025730

Approved for Release: 2021/04/20 C05025730

5170-71:ELD: js NRL Prob A01-17 SER: 00795 29001 1963

SECRET.

Brom: Director, U. S. Naval Research Laboratory, Washington, D. C. 20390

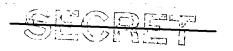
To: Office of the Director of Defense Research and Engineering,

Washington, D. C. Reg # 949057

Subj: MAGS System and Instrumentation (U)

Ref: (a) DIRAE ltr dtd 14 Oct 1963

Encl: (1) Description of NRL Gravity Gradient Stabilization Experiment


1. Enclosure (1) is attached as requested in reference (a).

By direction

Copy 5 of 5 Copies

Unclassified when enclosure is removed

GROUP-1
Excluded from automatic
downgrading and declassification.

SPECIAL ACCESS REQUIRED CLASSIFIED SPACE PROCEAM

Description of NRL Gravity Gradient Stabilization Experiment

Introduction

Many experiments to be flown in both military and civilian spacecraft may best be accomplished with one axis of the orbiting spacecraft aligned vertically. In an effort to have vertical alignment capability in Naval Research Laboratory spacecraft, the Satellite Techniques Branch has scheduled a gravity gradient stabilization experiment to be launched in December 1963.

It is the opinion of NRL engineers that the optimistic results of studies performed by General Electric Co., Bell telephone Laboratories, NASA, AFL and others, coupled with the successful gravity gradient stabilization experiment launched by APL prove the feasibility of stabilizing satellites with gravitational torques. However, NRL feels that no system has been sufficiently tested to be accepted as "state of the art".

In general, the stabilization task breaks down into three major problem areas; 1, reducing all satellite tumble and aligning the psyload in the desired orientation, 2, extending boom or booms to give a large ratio of mitch and roll axis moment of inertia to yaw axis moment of inertia, and 3, damping the satellite librations to orient the vertical axis within tolerable oscillations. This experiment does not attempt to resolve the initial attitude problem since there is no preferred direction of the plus or mimus Z axis of the NRL payload along the local vertical.

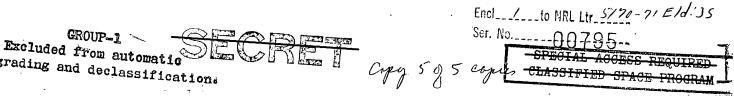
Test Payload

The stabilization system will be compatable with a payload described by the following parameters:

Weight -- 65 \$ 1b.

Center of Gravity -- 1 11 inch below geometric center

Moment of Inertia --


 $I_z = 0.6 \pm .1$ Slug-ft²

Ix = Iy = 0.5 1.1 Slug-ft2

Dimensions -- two 20" hemispheres separated by a 32" equatorial band

Magnetic Moment -- unknown, but expected to be small

downgrading and declassifications

The stabilization systems parameters are:

Boom length -- 15 ft.

Boom erection mechanism wt. -- 1.75 lb.

Damper diameter -- 5 inches

Damper Weight -- 11 1b.

Total stabilization system weight -- 14 11 1b.

The total test psyload weight is 80 \pm 5 lb. and after been extension the $I_x = I_y$ moment of inertia will have increased to 77 slug-ft².

Test Conditioning

THE GLEATIA B	tendent exharment attr ce remaned on a fullet gestered
Thor-Agena vehicle	from FMR on a scheduled launch date of 10 December 1963
with a 10 AM to 11	AM launch window. A 70° prograde inclination, 500 HM
circular orbit is	the desired launch trajectory. On orbit number 6 over
the	ground station, or orbit mmber 8 over the
ground station the	boom and damper weight will be extended by command. The
	and ground stations will record telemetry data on
all visible passes	until the initial oscillations have been damped to a
small amplitude (1	ess than 50) or a reliable curve has been plotted to
describe the satel	lite motion. HRL is negotiating to secure additional
ground station cov	erage during the period required for stabilization.
Performance data w	ill be monitored daily throughout the life of the
anto1144	

Description of Stabilization System

The use of an extendable boom mechanism to change the satellites mass distribution in orbit is common to all the proposed stabilization systems reviewed by NRL. This is normally accomplished by the extension of a mass attached to an extendable boom mechanism. To date the only source of these mechanisms is the Special Products Division, DeHavilland Aircraft of Canada, Ltd. NRL has had a great deal of experience with several models of the DeHavilland extendable booms in ground tests and considers these units to be flight worthy. Flight of DeHavilland's mechanisms as booms and/or long entermas by Airborne Instrument Laboratory, the Canadian Government, AFL and IRL have proven that these units will operate successfully in orbit.

The other component common to all the stabilization system reviewed by NRL was the damper. The damper must remove the energy of oscillation so that the satellite axis of minimum moment of inertia will stabilize along the local vertical. All of the systems reviewed by NRL utilized a different and always unique damper component. The damper selected to be flown on the NRL stabilization experiment is the magnetically anchored viscous damper designed, built and pre-launch tested by the General Electric Co. This damper was selected for (1) simplicity in ground handling, (2) anticipated high component reliability in orbit (3) computer studies indicate good damper performance (4) desirability of testing a system other than the damped spring and mass system successfully tested in orbit by AFL and, (5) the General Electric Co. indicates that they can deliver a damper unit by mid November. A detailed description of the boom extension mechanism and the magnetically anchored viscous damper are included in this report.

In the NML experiment the damper will be extended on the end of a 15 ft. boom. The weight of the damper will serve as the transferable mass necessary to greatly increase the pitch and roll moments of inertia. Figure 1 shows the stabilization system in launch configuration. The boom extension mechanism is rounted inside the satellite skin and attached through a hole in the skin to the damper. The damper is clamped to the satellite skin during launch and the vehicle-satellite separation modes of the flight.

After separation the satellite will probably have some tumble resulting from separation tipoff and vehicle motion. Even though the boom is unextended, the damper will remove all the tumble energy as the bar magnet tries to stay aligned with the earths magnetic field. The tumble rate is expected to be a maximum of 3 degrees per second and completely decay before the sixth orbit. By ground command the damper will be released and the boom deployment process will start. The boom extension will take approximately six minutes. At the time of boom deployment, the satellite attitude is arbitrary. Therefore, in the worst case the payload must be rotated 90° to be correctly oriented. If the worst case is assumed, the oscillation shout vertical should be decreased to 33° in approximately 10 orbits after boom deployment. In orbital configuration one time constant

is 10 orbits. One time constant will remove 37% of the initial oscillations. Since the best satellite aspect resolution is about 5°, slightly less than 30 orbits will be required for the satellite attitude to appear as steady state.

Description of Damper*

The magnetically enchored viscous damper, see Figure 2, consists of three elements: (a) viscous damper, (b) magnetic anchor, and (c) magnetic suspension. The device is completely passive, requires no external sources of power for operation, has no rubbing parts and is ideally suited for long life reliable operation in a space environment. Mone of the elements incorporated we presents an advance in the state of the art or represents basically new and untried concepts.

The viscous damper consists of two concentric spheres with a viscous fluid between them. When there is a difference in angular velocity, there will be a viscous shearing action which results in a dissipation of energy. In order to produce a difference in angular velocity of the spheres and to be assured that they do not eventually "lock-up" on each other, the inner sphere is fixed to the earth's field by the magnetic anchor. This is achieved by a bar magnet attached to the inner sphere, which acts essentially as a compass needle, always aligning itself parallel to the earth's magnetic field.

In order to assure the consentricity of the spheres and to prevent any possibility of subbing under operating conditions, the spheres will be separated magnetically. This separation will be attained by a magnetic suspension in which a diamagnetic material is repelled by a magnetic field. The outer sphere will be made of a diamagnetic material, and the magnetic field will be produced by permanent magnets attached to the inner sphere.

Damping will be obtained by the relative motion of two concentric spheres which are separated by a viscous fluid. The concept of utilizing the motion of concentric spheres to produce damping is not new in the state of the art. It results in a small, lightweight, and most important, a completely passive device.

^{*} WRL Experimental Damper Proposal, Sept. 17, 1963 General Electric Company, Valley Forge Space Technology Center, Fhiladelphia, Pa.

The magnetic anchor serves to hold the inner sphere fixed while the outer sphere, which is attached to the spacecraft rotates. The magnetic anchor locks the inner sphere to the earth's magnetic field by means of a longitudinally magnetized bar magnet attached to the inner sphere. This bar magnet acts as a magnetic dipole which will be torqued by the earth's field. The perturbing effect of the bar magnet flipping as the satellite crosses the earth's poles will be unnoticeable since it is less than the 5° aspect resolution. The use of a magnetic dipole to orient a satellite is not a new concept; it has been used successfully in Transit 1B and 2A, where an Alnico V bar magnet 4 inches long, and 1 inch in diameter was used.

Boom extension Mechanian*

The boom extension mechanism is depicted in its basic form in Figure 3. The boom elements are formed out of strip material, heat-treated into a natural circular section in such a manner that the edges of the material overlap by approximately 90°, giving the tubular element a strength which is almost equivalent to that of a seamless tube of the same diameter and wall thickness. The boom elements, when retracted, are stored in the strained, flattened condition by winding them on a drum. When the boom is retrested, the tubular element is continuously transformed from its natural eircular section to the flattened condition by passing it through a suitable guidance system. The boom may be extended or retracted simply by rotating the storage drum in the correct direction. It will be apparent that retracting the boom involves supplying strain energy to the boom material as it flattens from its circular section. The coiled boom, therefore, has a natural tendency to self-extend, thus providing low power extension, the drive motor acting mainly as a governor to limit the extension velocity. The NRL boom will have no in-flight boom retraction capability.

The j5 feet of boom element is stored on a drum and is led through a guide sleeve which supports it as it forms from its strained, flat cross section to its natural tubular shape. Mechanical power transmission to the drum from the electric drive motor is by a spur gear train. Boom extension is automatically stopped when full length is achieved by the action of a

^{*}Proposal for 40 ft. Extendable Antenna for Lofti Satellite, DeHavilland Aircraft of Canada, Ltd., Downsview, Ontario

microswitch in series with the drive motor being actuated by a slot cut in the tail end of the boom.

Throughout the design of the proposed system, close attention has been given to compactness, low weight and, in particular, extreme reliability. To this end, the design has been simplified wherever possible and use made of proven hardware and techniques. It is considered that the proposed system represents a carefully balanced compromise between the above requirements.

The following sections describe some of the major mechanical features of the boom mechanism:

Boom

Beryllium Copper strip, processed to retain a high elastic limit stress. Each element will be 2.0 in. wide and 0.002 in. thick, the thickness being determined by the stresses imposed upon the element as it unfurls from its unstrained circular condition to the flattened condition for storage purposes. The strip will form into a tube of approximately 0.5 in. diameter with 90° overlap. The boom element has been designed so that the flattening stresses are sufficiently below the elastic limit stress of the material to ensure a virtually unlimited element fatigue life. Structural analysis reveals that boom material of this size will easily withstand the bending moments generated by the specified change in vehicle spin velocity.

Drive Motor:

The drive motor is a 12 volt D.C. permanent magnet type, with a 3/4 in. frame size. It is complete with an integral precision gear head providing a 150:1 gear reduction. A final gear reduction is made from the gearhead output shaft to the boom storage drum by external mylon spur gears providing the desired boom extension time of 5.1 tl minutes.

The motor bearings are double shielded, stainless steel ballraces and are lubricated by G.E. 300 low vapour pressure grease, as is the gearhead. This type of motor has undergone extensive testing to prove its ability to operate in a space environment and DeHavilland experience with this type has shown them to be entirely satisfactory. Tests under thermal vacuum conditions up to 200 hours have shown no deterioration in performance.

Guidance System:

The boom material must be guided very precisely as it transforms from the stored condition to its tubular shape in order to ensure smooth reliable extension. Over the years DeHavilland have developed a simple, lightweight, guidance system which exhibits these properties and will be used in the proposed design.

This guidance system employs tangential element take off, with automatic compensation for the decreasing drum diameter as the boom element is extended. Spring belt tensioners are used to restrain the element on the drum.

Structure and Materials:

The boom system is constructed from two fibre glass side plates, correctly located by magnesium and stainless steel spacers. The boom storage drum, guidance system components, and the external spur gears are made from mylon. All materials used have a proven ability to withstand a space environment for long periods of time. Aluminum and magnesium parts will be anodized to MIL-A-8625 and Dow 17 respectively. No other materials used require surface treatment.

Satellite Earth Aspect Instrumentation

It was decided to fly a MAGS System as a research and development experiment whose performance would not affect satellite operation. Due to the short lead times involved, it was decided to fly an optical instrumentation system of limited resolution but covering deviation angles from the local vertical from 0° to 90°. This instrumentation system is of such a nature that quick look data reduction is possible without mathematical calculations.

The chief disadvantage of this system is that aspect data is available only when the satellite sees the earth fully illuminated from horizon to

horizon around 360°. Thus, when the sub-satellite point is at local noon for any spot on the earth, aspect data is accurate.

Due to vehicle problems, it is not known whether the satellite will stabilize top up or top down. Therefore, it was necessary to instrument the satellite for either possibility.

It was decided to use six optical sectors of five detectors each, a total of 60° wide located symmetrically 120° apart on the top and bottom hemispheres of the satellite concerned. The earth's horwon at the desired altitude is at the center of these sectors (the 60° regle) for an earth stabilized satellite.

Available logic circuitry in the satellite makes it practical to sequentically switch B+ power to each of the six sectors. The outputs of these sectors can then be connected together and to the five comman level detecting devices (Schmidt Triggers). Thus at any particular time one sector of five sensors (or detectors) has power applied to it and has its outputs routed to the level detectors which are followed by mixing resistors, switching circuits, and a subcarrier oscillator. The basic block diagram is shown in Figur 4. A complete frame of data is available every four seconds.

The Earth Aspect output has six discrete levels of "O" V, 1 V, 2 V, 3 V, 4 V, or 5 V which is changed to corresponding frequency variations by the subcarrier oscillator. Given an output reading at a particular time, the output will increase by 1 volt for each sensor that is illuminated. That is, each of the five sensors increases the output reading by 1 volt when it is illuminated by reflected light from the earth.

The detailed optical geometry of a sector is given in Figure 5. Each sector is $1/k^{\mu}$ wide, and mounted on a 20^{μ} sphere.

By regarding the earth from horizon to horizon around 360°, it appears as a disc of a particular size at a particular altitude. In the same manner the hemisphere of the satellite with the three sectors mounted on it can be laid flat and dimensioned to the same scale as the earth. These plane surfaces are shown in Figure 6.

Considering the inside of the earth circle lit up, one can lay it over the satellite template and move it relative to the satellite template. Any sensitive portion of a sensor thus illuminated will add 1 volt to its own sector reading. Thus the output reading of a sector will be 1 volt times the number of its sensors that are illuminated or partially illuminated. By measuring the distance between centers of these two circular templates and using the length-angle ratio necessary to make these templates, one knows the angle from the local vertical to which the satellite pole is pointed once three sector outputs are known. Once these templates are made, one can determine all possible satellite outputs for a particular altitude before the satellite is in orbit. A tentative list of 500 nantical miles follows:

Possible	Borth	Aspect	Outputs	for	500 I	M

Output Volts or Frequency	e Min Degrees	<u> 9 Max</u> Degrees
333	0	5
233	· 5	14
334	7	7
234	7	. 16
224	9	17
134	16	30
144	16	30
124	18	18
225	18	22
125	19	33
135	23	30
115	24	39
Opp	30	1 47
034	30	56
035	31	45
025	32	55
015	35	63
005	40	90
024	55	62

Output Volts or Frequency	0 Min Degrees	<u> 0 Max</u> Degrees
033	56	62
014	62	65
023	63	65
022	66	6 7
004	66	75
013	67	69
003	68	72.
012	69	59
005	70	; *O
001.	71	77.
011	71	71
000	72	90

It is to be noted that this list is tentative, arrangement of the output readings makes no difference, and there are both redundant and overlapping outputs. Depending on orbit results and length of time in orbit, the position of the satellite will probably be known to better than 5° .

Independent sun sensors are also provided to determine which end of the satellite is pointed earthward and therefore which met of three sectors to read data from.

Patrick H. Cudnore

Satellite RF Eystems Section

Robert T. Beal

Satellite Structure Design Section

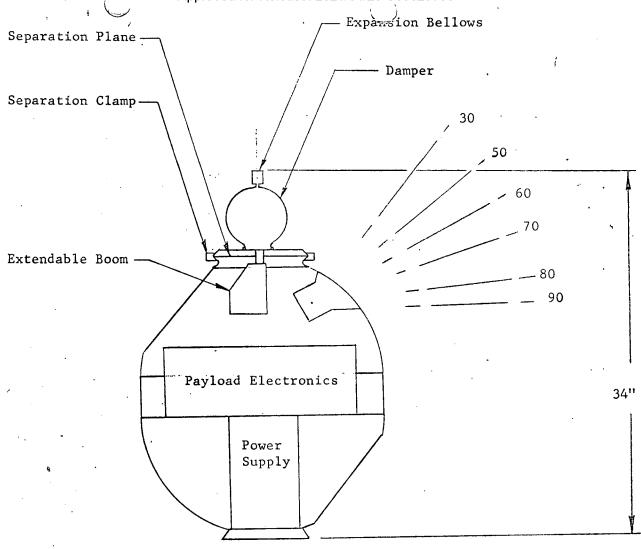


Figure 1

Gravity Gradient Stabilization Experiment Payload

Satellite weight - 65 \pm 5 lb. Stabilization system weight - 14 11 lb.

Total Satellite weight - 79 ± 6 lb.

Dimensions - two 20" hemispheres separated by a $3\frac{1}{2}$ " equatorial band

Before boom extension

Center of gravity - 1 -1 inch below geometric center

Moment of inertia $I_z = 0.6 \pm .1 \text{ Slug ft.}^2$ $I_x = I_y = 0.5 \pm .1 \text{ Slug ft.}^2$ After boom extension $I_x = I_y = 77 \pm 5 \text{ Slug-ft.}^2$

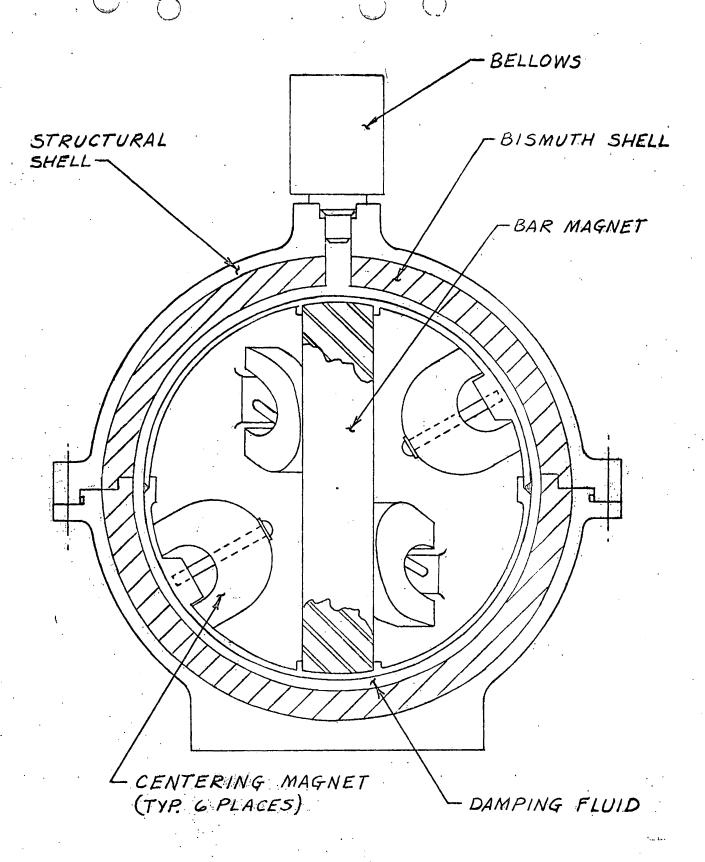
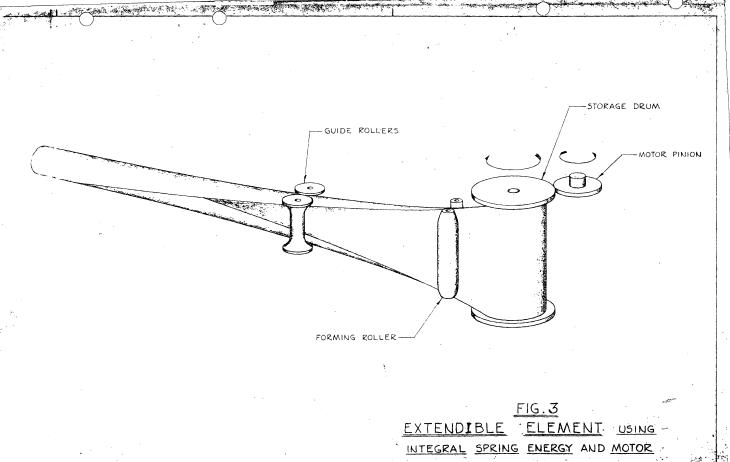
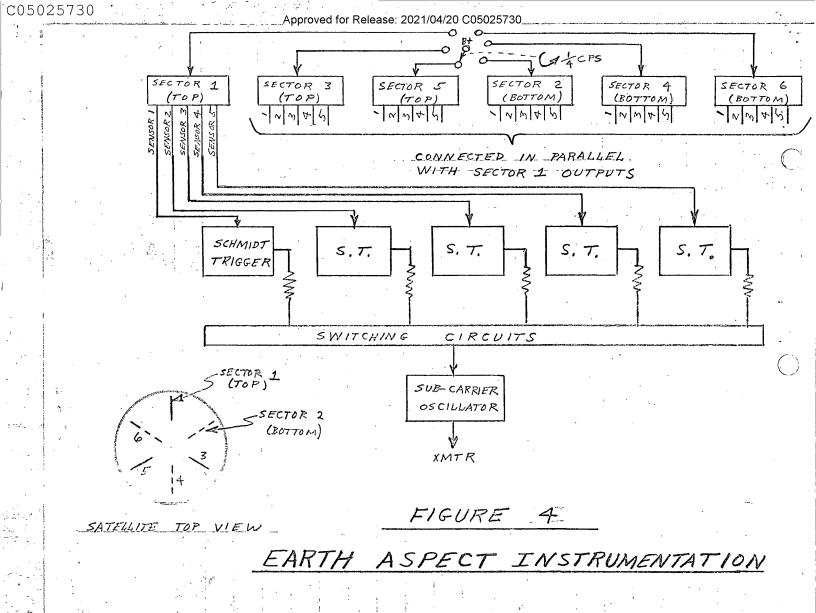
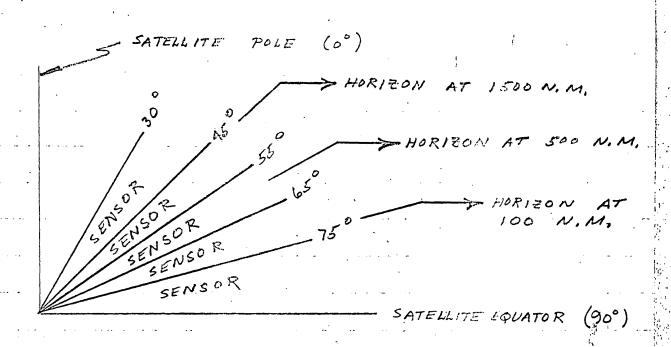




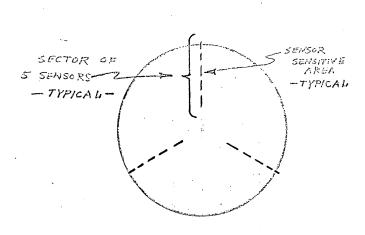
FIGURE-2
MAGNETICALLY ANCHORED VISCOUS DAMPER

ASSIST EJECTION PRINCIPLE


Approved for Release: 2021/04/20 C05025730

Approved for Release: 2021/04/20 C05025730

C05025730.


Approved for Release: 2021/04/20 C05025730

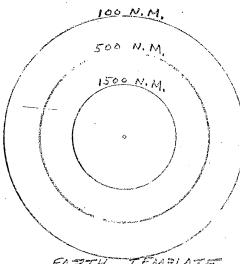

NOTE: ALL ANGLES APPROXIMATE

FIGURE 5

SECTOR OPTICAL GEOMETRY

EARTH TEMPLATE

NO SCALE

FIGURE 6

ASPECT CALCULATOR EARTH

Approved for Release: 2021/04/20 C05025730 @