C050	98605	Approved for	r Release: 2024/08/06 C0	5098605
		"tisco) James	ORET/E	BIF-107W-44075-72A REVISION A Copy // Page 1 of 45
	TO:		cc: See Below	9 November 1972

FROM SUBJECT: P-989 Historical Summary and Aerospace Support This report provides a current one-page summary of each P-989 system. It is an update of BIF-107W-44059-70. The following is a brief history of Aerospace activities in P-989 and related efforts. The P-11 piggyback satellite was conceived and designed by LMSC in 1962 to fit the Agena aft rack for cheap rides. The first two launches in 1963 were Van Allen Belt probes specified by Aerospace Labs, who also dictated the tasking and processed the data. Four of the other early P-ll's were Pundit telemetry collection systems contracted by from Sylvania, The only other associate contracts for payloads were with Stanford (SEL) for the Fanion and Sampan payloads. In July 1964, the Aerospace 770 Program Office was formed 25X1 to support Col. Yundt in the changeover of the 698 BK under Program to the 770 Program, and in the development of the AIL Multigroup and the LTV Setter payloads. Also, Maj. John Copley who had managed the 25X1 P-11 program was succeeded by Maj. Jack Kulpa (7-64 to 3-65), and 25X1 from NSA was given a field assignment with Yundt's office. The codeword, Eardrop, and the NRL codeword, Poppy, were dropped for a common codeword, Earpop. In the spring of 1964, approved the development of a two-burn P-11 with a horizon sensor and sun sensor for attitude reconstruction to

SECRET/E

support the geoposition capability of the SEL proposed Fanion payload. In

the fall of 1964, Yundt asked

the P-11 Program.

HANDLE VIA BYEMAN CONTROL SYSTEM ONLY

for Aerospace technical surveillance of

was assigned, and subsequently evaluated the LMSC

4564-72

Approved for Release: 2024/08/06 C05098605

SECRET/E

BIF-107W-44075-72A

hardware and software for P-11 attitude reconstruction, established a new P-989 altitude of 270 NM, helped establish the requirements and formats for spacetrack ephemeris determination, coordinated LMSC and NSA approaches to spacetrack ephemeris use, and evaluated old proposals for a Boeing Poppy type system (SPADS) and for a switch of P-11 readout from the SCF to either the Poppy ground stations or the P-417 ground stations (per request from Dr. McMillan, DNRO). _______ later asked for an Aerospace evaluation of the Fanion payload proposal. This was performed by ______ with Labs personnel support.

The first dual burn P-11 was the 4401 Pundit system. It carried a horizon sensor and sun sensor to check out the 4402 Fanion/Tripos attitude reconstruction software packages. After launch in April 1965 its spin axis unexpectedly showed a significant precession rate. Aerospace correctly identified the cause as interaction of the vehicle magnetic moment with the earth's field and proposed consideration of commandable spin axis and spin rate control on future P-11's. Tivoli III in 1970 had the first P-11 spin axis control system, and Arroyo in 1971 had the first spin rate control system.

Aerospace next evaluated LMSC proposals for magnetic and dynamic balance of the P-11 and for using three sun sensors to obtain a direct on-orbit measurement of spin-axis offset from body coordinates. Aerospace also evaluated LMSC software proposals for 4402 on-orbit geoposition bias analysis and for modelling spin axis drift as a function or orbital magnetic, gravity gradient, and drag torques.

After the launch of the 4402 Tripos/Fanion. attended many NSA software progress meetings and provided mathematical models for several subroutines. It was eight months after launch before NSA had the Tripos software working. In the meantime, SAC was assigned the responsibility for Fanion processing and was routinely geopositioning to accuracy. SAC's only primary processing role in Sigint satellite history was for the three P-ll Fanion payloads. The Fanions were the only P-ll's sold as EOB systems until the 1972 Ursala system.

SECRET/E

Approved for Release: 2024/08/06 C05098605

SECRET/E

.. BIF-107W-44075-72A

·
The P-11 director from 6-65 to 4-66 was L/C Charles Lamb.
The LMSC director from program inception through FY 66 was
In the summer of 1965 Aerospace was asked to evaluate the potential of PRF
Doppler as a radar geopositioning technique. This resulted from the exposure
of NRO staff members to several reports by of the Aerospace
Labs Division on the results of a cooperative PRF Doppler experiment which
flew on the final P-11 Van Allen belt probe. delivered the Labs Division
computer program to NSA and estimated that the technique should work well in
a light environment against stable PRF emitters, but that it required a lot of
data processing per geoposition and would result in roughly accuracy.
On this basis the 4404 Plicat payload was configured to use the technique against
the Hen House radar. worked with LMSC programmers to code the
necessary math for evaluation of the technique against Cal van data. The 4404
system subsequently failed prior to any data return. Poppy PRF Doppler
processing has produced roughly accuracy.
The final P-11 associate contracts for SEL payloads were for
Sampan I and Sampan II. In January 1966 and Labs personnel
evaluated the Sampan I proposal. Later in the year the LMSC
Office was formed under and took the better people from the P-11
organization. The subsequent series of P-11's (4404, 4405, 4406, 4408, and
4410) had serious subsystem failures within the first three months on orbit.
The 4405 Sampan/Sousea system lost its horizon sensor at launch, and work-
around schemes to determine spin position were defeated by slight variations
in P-11 spin rate within each orbital revolution. Hence, the primary mission
of locating S and X-band radars was a failure.

In 1965/66, the P-11 program was redesignated P-770B, then P-989. From January 1965 through November 1966 the Aerospace support to P-989 consisted of evaluations of the new 1 MHz recorder development

OFCREI/L

BIF-107W-44075-72A

and the new 39 command system plus continuing support in the operations area from the Satellite Control Office. The director of P-989 from 4-66 to 7-70 was Maj. Frank Penney who was promoted to Colonel during that period.

In December 1966, Aerospace generated statistical probability of intercept data for P-989, P-770, and Poppy to help propose a quick reaction response to the ABM/AES problem. Bradburn used these data to justify an ABM/AES series of P-989 systems to fly in 1967/68 and delegated as his representative on the Harry Davis committee to serve as a consultant to the probability subcommittee.

The last of the original ABM/AES P-989's was the Vampan 100-1000 MHz spinning interferometer. This was the only P-989 in the series for which LMSC went out for competitive bid. For different reasons, AIL and TRW no-bid it. In a competition between LTV, EDL, and GE (Utica), LMSC picked GE, and Aerospace picked EDL. Maj. Kranske disallowed GE and Bradburn directed LMSC to award it to EDL.

In the fall of 1967 following the go-ahead, Aerospace studied low altitude program requirements and recommended cancellation of P-770 and a future program of P-989 plus a new competitive three-axis stabilized piggyback. To avoid the startup costs of the latter, this was changed to a four P-989 per year recommendation which was the solution dictated later by Dr. Flax, DNRO.

In the fall of 1967 Aerospace studied possible boosters for dedicated launches of P-989 and recommended dual launches with TAT/Burner II's. LMSC studied the same problem and recommended four at a time on Thorad/ Agena's. Piggyback rides with P-846 were negotiated and the problem disappeared.

25X1

25X1

25X1

Approved for Release: 2024/08/06 C05098605

SECRET/E

BIF-107W-44075-72A

In the first half of 1968 Aerospace provided detailed direction to LMSC for the development of the 4420 Tripos/Sousea 4-12 GHz spinning pencil beam data processing package. NSA (Ray Potts) concurred with the assignment of 4420 as the first P-989 for which LMSC would have primary processing responsibility on the basis that Aerospace would provide detailed support to LMSC, and that the ABM series had provided a processing overload at NSA. The LMSC response to Aerospace direction was somewhat slow, and production processing of 4420 data did not begin until five months after launch. In the meantime, NSA also assigned LMSC processing responsibility for the Vampan spinning interferometer P-989 system.

With the development of the Avco 39 command system for all P-989's

after 4406 (which was supported by in the Satellite Control Office),
contracted with PRC for a command software package. SETD for this
package and mods to it was provided by In July 1968
also formed a group for providing SETD over the MADS contract which covered
LMSC spin-axis determination, command history generation, time correlation
and Cal van analysis for all P-989's plus primary LMSC processing for 4420
and 4413, as well as the P-770 Strawman systems.
Since mid-1968 Aerospace has been very active in the P-989 payload
proposal and design areas. recommended many of the vehicle and
payload changes associated with the conversion to heavy P-989's, S-Band
downlinks, and the follow-on ABM systems such as Tivoli II and III. A paper
on telemetry sampling was viewed by as instrumental to the
approval of Savant II (4419). Aerospace proposed the basic configurations
for Tophat (4423), Arroyo (4427), and Mabeli (4424) and provided the prime
sales pitches which resulted in the approval of these and later systems.
In January 1970, of the Aerospace P-98 office and Labs
personnel correctly analyzed the causes of the P-989 Watkins-Johnson
S-band transmitter warmup problems, although LMSC had failed to do so
after a \$150K four-month effort. An Aerospace fix was implemented in all
new units, and an off-the-shelf Conic transmitter identified by Aerospace

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72 A

25X1

was flown as a backup. The Conic transmitter has since replaced the
Watkins-Johnson unit, and a new unit designed to LMSC spec. by Teledyne
is under test. As a result of Aerospace recommendations, a new SGLS
command/telemetry unit has also been developed. Since 1969,
of Aerospace has provided strong technical support to LMSC in the design of
a new launcher to interface with current P-467 piggyback rides, in a recorder
improvement program, in the paper designs of various expanded power systems,
and in other mechanical areas. In June 1971, replaced
as head of the Aerospace P-98 office and has since coordinated direction of the
LMSC P-989 effort, headed since 1967 by joined
the Aerospace P-98 office in the fall of 1971. This current team has greatly
expanded the Aerospace effort to achieve improved reliability and performance
of the P-989 systems and in directing the current block change to a heavier
and more capable spacecraft design.
The director of P-989 from 7-70 to 12-70 was L/C Gene Jakes
director of 1 /0/ from 1 /0 was 11, 6 dens bares
who was promoted to Colonel during that period. The director since 12-70 has
who was promoted to Colonel during that period. The director since 12-70 has
been L/C Don Wipperman who now heads a program office (up from
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70,
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70,
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly 250 men. The current annual program budget is \$22M.
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly 250 men. The current annual program budget is \$22M.
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly 250 men. The current annual program budget is \$22M. cm cc: L. Allen, Jr.
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly 250 men. The current annual program budget is \$22M. cm cc: L. Allen, Jr. J. Copley
been L/C Don Wipperman who now heads a program office (up from in 1971). The Aerospace commitment has grown from 1 man in FY 64 to 2 men in FY 66 to 3 men in FY 68, to 4 men in FY 70, to 5 men in FY 71 to 6 men in FY 72. The LMSC program office has roughly 250 men. The current annual program budget is \$22M. cm cc: L. Allen, Jr.

SECRET/E

Approved for Release: 2024/08/06 C05098605 SUMMARY OF P-989 SYSTEMS

BIF-107W-44075-72A -7-

Veh. No.	Name(s)	Launch	Life(Days)	Mission/Target	
4051	Hitch Hiker	3-18-63	0	Van Allen Belt	
4201	Hitch Hiker I	6-26-63	75	Van Allen Belt	
4001	Pundit I	10-29-63	237	Type B TLM	
4101	Pundit II	12-21-63	81	Type B TLM	
4301	Noah's Ark	7-6-64	126	ABM Search	
4202 4102 4302 4401 4402	Hitch Hiker II Pundit III Step 13/Plymouth Rock Pundit IV Fanion I/Tripos I	8-14-64 10-8-64 10-23-64 4-28-65 6-25-65	730 0 123 810 630	Van Allen Belt Type B TLM 150-230 MHz/1000-2650 MHz 25X1 4000-8000 MHz Search	
4403	Magnum Leige/Plicat Sampan I/Sousea I Fanion II/Tripos II Slewto/Pennon	8-3-65	585	100-250 MHz ABM	
4404		5-14-66	0	168-178 MHz/153-162 MHz	
4405		8-16-66	424	2000-4000 MHz/8000-12000 MHz	
4406		9-16-66	82	4000-8000 MHz Search	
4408		5-9-67	94/75	Hen House TI/	
4409	Savant I Facade Tivoli I Lampan I/Sampan II Tripos III/Sousea II	6-16-67	494	Types B&M TLM (Pre-D) 25X1	
4410		11-2-67	97	250-2250 MHz ABM	
4412		1-24-68	469	100-4020 MHz ABM TI	
4411		3-14-68	368	1000-4000 MHz Search	
4420		6-20-68	569	4000-12000 MHz Search	
4413	Vampan I	9-18-68	374	100-1000 MHz ABM Search Optical Surface Evaluation Optical Surface Evaluation SCF Calibration 50-4020 MHz TI (Pre-D)	
4414	Aztec I	-	-		
4415	Aztec II	-	-		
4416	Calsat	-	-		
4418	Tivoli II	3-19-69	520		
4417 4419 4407 4422 4421	Lampan II/Sampan III Savant II Weston Tivoli III Tripos IV/Sousea III	5-1-69 9-22-69 9-30-69 3-4-70 5-20-70	291 601 321 577	1000-4000 MHz Search Types B & M TLM (Pre-D) 50-4020 MHz TI (Pre-D) 4000-12000 MHz Search	
4423	Tophat	11-18-70	30	450-1000 MHz Tropo Copy	
4427	Arroyo	9-10-71		Microwave Map	
4424	Mabeli	1-20-72		ABM Main Beam TI	
4425	Ursala I	7-7-72		2000-12000 MHz EOB	
4426	Ursala II	3-73		2000-12000 MHz EOB	
4428	Tophat II	1-74	-	450-1000 MHz Tropo Copy	
4429	Raquel	3-74		4000-18000 MHz Search/TI	
4430	Ursala III	1-74		2000-12000 MHz EOB	
4431	Ursala IV	1-75		2000-12000 MHz EOB	

SECRET/L

BIF-107W-44075-72A

(1) 4051 - HITCH HIKER - VAN ALLEN BELT PROBE

LAUNCHED:

18 March 1963 on first P-162 TAT/Agena D (1164)

ORBIT:

No orbit - booster failed

SPONSOR:

Aerospace Corporation - Laboratory Division

RECORDER:

Leach Two-Track 12/1 - 100 KHz Recorder

ANTENNAS:

Quarter wave stubs for command and TLM

VEHICLE

DESCRIPTION:

Weight = 230.8 lbs. (incl. 43.1 lb. P/L) plus 39.2 lb. launcher

Thiokol 83 lb. TE-345 kick motor for 2000 NM apogee

72 fixed solar arrays for 260 w-hr/day (72 cells/array)

7 tone Zombie 136 MHz command system

Gas bottle spin system for 60 rpm

Two LMSC 240 MHz telemetry transmitters

LMSC battery, pyros, command system, launcher,

power control unit, and antennas

Size: 35" x 35" x 13" with rounded shoulders to fit

under Agena shroud

DATES:

Mission Approval:

Fall of 62

P/L Contract Award:

Fall of 62

P/L Delivery:

January 63

USAF Buy-off:

14 March 1963

STORET/E

*BIF-107W-44075-72A

(2) 4201 - HITCH HIKER - VAN ALLEN BELT PROBE

LAUNCHED:

26 June 1963 on P-162 TAT/Agena D (1166)

ORBIT:

 185×2230 NM at 82.1° inclination

DECAY:

By January 1970, apogee had decayed to 2090 NM

OTHER

DESIGNATIONS:

Hitch Hiker 1, 1963 - 25B

SPONSOR:

Aerospace Corporation - Laboratory Division

CONFIGURATION:

Same as 4051 Hitch Hiker

FAILURES:

25 days - Status Commutator

37 days/247 cycle - Recorder (continued to transpond data)

75 days - Power supply (low voltage cut-off)

75 days was too short to generate good Van Allen Belt map

DATES:

Mission Approval:

September 62

P/L Contract Award:

September 62

P/L Delivery:

March 63

USAF Buy-off

26 April 1963

SECRET/E

Approved for Release: 2024/08/06 C05098605

SECRET/E

BIF-107W-44075-72A

(3) 4001 - PUNDIT I - TELEMETRY SYSTEM

LAUNCHED:

29 October 1963 on P-162 TAT/Agena D (1601)

ORBIT:

160 x 324 NM at 90° inclination

DECAY:

23 May 1965 (18.8 months)

OTHER

DESIGNATIONS:

1963 - 42B, MSN-7301

PAYLOAD

CONTRACTOR:

EDL (Sylvania), Mountain View, Calif.

MISSION:

TECHNIQUE:

Recognize, video detect and stretch pulses

First use of two recorders, four transmitters (232, 236,

240, and 252 MHz)

RECORDER LIFE,

DAYS/CYCLES:

Leach 100 KHz 4/1 - 237D/1502 cycles

Leach 100 KHz 2/1 - 9D/56 cycles

PAYLOAD

ANTENNAS:

12 inch Loop, 18 inch monopole

TIMER:

Adcole binary clock with 4 fixed time delays for P/L

turn-on, up to 30 minute delay to turn-off

WEIGHT:

180 lb. (incl. 32.3 lb. P/L) plus 40 lb. launcher

Thiokol TE-344 kick motor for 300 NM apogee

Other subsystems same as 4051 Hitch Hiker

LIFE:

237 days to final recorder failure

OTHER FAILURES:

None - Status checks continued until reentry;

marginal mission - few useful intercepts

DATES:

Mission Approval:

9 January 63

P/L Contract Award:

23 August 63

P/L Delivery:

4 October 63

Buy-off

25 October 63

(L/C Copley/Capt. O'Connell)

SECRET/E

Approved for Release: 2024/08/06 C05098605

25X1

BIF-107W-44075-72A -11-

(4)4101 - PUNDIT II - TELEMETRY SYSTEM

LAUNCHED:

21 December 1963 on P-162 TAT/Agena D (1168)

ORBIT:

 180×225 NM at 64. 5° inclination

DECAY:

7 November 1964 (10.6 months)

OTHER

DESIGNATIONS:

1963 - 55B, MSN - 7302

PAYLOAD

CONTRACTOR:

EDL (Sylvania), Mountain View, Calif.

MISSION:

CONFIGURATION:

Same as 4001 Pundit I, except new solar array current monitor and 76 fixed solar arrays vs 72 on Pundit I

WEIGHT:

185 lb. (incl. 34.5 lb. P/L) plus 40 lb. launcher

RECORDER LIFE,

DAYS/CYCLES:

Leach 100 KHz 4/1 - 77D/220 cycles

Leach 100 KHz 2/1 - 3 D/8 cycles

OTHER FAILURES:

Solar array monitor at launch

6 days - one of the four transmitters

81 days - turned off - few useful intercepts

DATES:

Mission Approval:

9 January 63

P/L Contract Award:

23 August 63

P/L Delivery:

14 November 63

Buy-off:

17 December 63

(L/C Copley/Capt. O'Connell

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72 A

(5) 4301 - NOAH'S ARK - ABM SYSTEM

LAUNCHED:

6 July 1964 on P-206 Atlas/Agena D (4807)

ORBIT:

 177×220 NM at 92.9° inclination

DECAY:

3 January 1965 (6 months)

OTHER

1964-36B, MSN-7304 (P-11 was designed as 4203

DESIGNATORS:

Van Allen Probe, then modified)

PAYLOAD

CONTRACTOR:

ATI (Appl. Tech. Inc.), Palo Alto, Calif. (\$46K)

MISSION:

ABM search, 154-550 MHz

TECHNIQUE:

Crystal video receivers

154-162 MHz, -65 dbm sens. to meas. Hen House power 169-177 MHz, -55 dbm for Tall King D/F by PRF Doppler 220-550 MHz, -65 dbm for RF (swept filter), PRF & PW

RECORDERS:

Two Prec. Instr. Co. 40 KHz 8/1 Dual Track (only

non-Leach buy in P-11 history)

ANTENNA:

23 x 28 inch window shade (first deployable antenna)

72 CELL SOLAR

MODULES:

50 fixed, 18 deployable (first deployable panels)

OTHER SUBSYSTEMS: Same as 4101 Pundit I

WEIGHT:

190 lb. (incl. 34.1 lb. P/L) plus 44 lb. launcher

FAILURES:

1 day - LMSC Aux. Timer (for link turn-on in 10,040 sec)

8 days/35 cycle - both PIC recorders started sticking

38 days - Hen House receiver

102 days - One of four LMSC transmitters

126 days - Both recorders very intermittent after 350

cycles - system turned off - fairly successful

DATES:

Mission Approval:

February 64

P/L Contract Award:

May 64

P/L Delivery:

5 June 64

Buy-off:

22 June 64 (L/C Copley/Capt. O'Conn25X1

SECRET/E

BIF-107W-44075-72A

(6) 4202 - HITCH HIKER II - VAN ALLEN BELT PROBE

LAUNCHED:

14 August 1964 on P-206 Atlas/Agena D (4808)

ORBIT:

 145×2032 NM at 95.7° inclination

DECAY:

By January 1970, apogee had decayed to 1500 NM

OTHER

DESIGNATIONS:

P-11 Radiation Satellite, 1964-45 B

SPONSOR:

Aerospace Corporation - Laboratory Division

CONFIGURATION:

Same as 4051 Hitch Hiker

(230.8 lb. system/43.1 lb. payload)

FAILURES:

14 days - status commutator

22 days/359 cycle - Leach 100 KHz 12/1 recorder

OTHER:

Transponded data until turned off (day 730)

Last non P-989 system to be launched

Very successful mission

DATES:

Mission Approval:

Fall 63

P/L Contract Award:

Fall 63

P/L Delivery:

May 64

USAF Buy-off

19 June 1964

SIORET/E

Approved for Release: 2024/08/06 C05098605

Approved for Release: 2024/08/06 C05098605

SECRET/E

BIF-107W-44075-72A

25X1

25X1

(7) 4102 - PUNDIT III - TELEMETRY SYSTEM

LAUNCHED:

8 October 1964 on P-206 Atlas/Agena D (4810)

ORBIT:

No orbit - booster failed

OTHER

DESIGNATIONS:

MSN-7303

PAYLOAD

CONTRACTOR:

EDL (Sylvania), Mountain View, Calif. (\$336K)

MISSION:

CONFIGURATION:

Same as 4101 Pundit II (Step through 4 crystal

mixers, 500 KHz IF split through 5×120 Hz filters, recognizer, select, detect, and record filter output)

VEHICLE:

New voltage limiter

Electrical commutator to back up mechanical

WEIGHT:

190 lb. (incl. 34.5 lb. P/L) plus 40 lb. launcher

DATES:

Mission Approval:

23 August 63

P/L Contract Award:

23 August 63

P/L Delivery:

23 January 64

Buy-off:

17 July 64

(L/C Copley/Capt. O'Connell)

SECRET/E

BIF-107W-44075-72A

(8) 4302 - STEP 13/PLYMOUTH ROCK - ABM SYSTEM

LAUNCHED:

23 October 1964 on P-206 Atlas/Agena D (4811)

ORBIT:

172 x 191 NM at 95.4° inclination

DECAY:

23 February 1965 (4 months)

OTHER

DESIGNATIONS:

1964-68B, MSNS-7305/06 (P-11 was designed as 4204

Van Allen Probe then modified)

PAYLOAD

CONTRACTORS:

HRB Singer (Step 13)/ATI (Plymouth Rock) (\$286K/\$379K)

MISSIONS:

ABM Search 150-230 MHz and 1000-2650 MHz

STEP 13:

Superheterodyne 150-168 MHz in 48 steps, 1/2 sec. dwells 168-230 MHz in 448 steps, 6 msec dwells; sens. = -95 dbm

PLYMOUTH ROCK:

1000-2600 MHz crystal video receiver plus 10/sec

swept YIG for RF; sensitivity = -65 dbm

ANTENNAS:

 30×52 inch window shade with 150-230 MHz two-arm spiral,

1000-2600 MHz four-arm spiral

OTHER:

First flight of Adcole sun sensor and solar array

power monitor

Last use of single Thiokol kick rocket

50 fixed/18 deployable solar modules (like 4301)

RECORDERS:

Leach 100 KHz 1/1 (Step 13) and 4/1 (Plymouth Rock)

WEIGHT:

207 lb. (incl. 44.1 lb. P/L's) plus 44 lb. launcher

FAILURES:

41 days/360 cy - Step 13 1/1 recorder

70 days - LMSC aux. timer (for link turn-on in 10,040 sec.)

123 days - reentered with 490 cy on 4/1 recorder

Fair mission success

DATES:

Mission Approval:

Feb. 64 (Concept Rev. 1-27-64)

P/L Contract Award:

13 July 64 / 15 June 64

P/L Delivery:

29 Sept. 64 / 3 Aug. 64

Buy-off

19 Oct. 64

(L/C Copley/Capt. O'Connell)

SECRET/E

Approved for Release: 2024/08/06 C05098605

Approved for Release: 2024/08/06 C05098605

SECRET/E

BIF-107W-44075-72 A

(9) 4401 - PUNDIT IV - TELEMETRY SYSTEM

LAUNCHED:

28 April 1965 on P-206 Atlas/Agena D (4815)

ORBIT:

 273×290 NM at 95.2° inclination

DECAY:

31 October 1969 (54 months)

OTHER

DESIGNATIONS:

1965-31B, MSN-7309

PAYLOAD

CONTRACTOR:

EDL (Sylvania), Mountain View, Calif. (\$358K)

MISSION:

25X1

MODE B:

Video record PPM TLM as on previous Pundits

MODE A:

Step 60-80 MHz in 256 steps @ 40 msec/step

Extract FDM voice by lim/descrim, encrypt at 100 KBPS,

and transpond two links to Poppy stations at 138.5 and 139.5 MHz

MODE C:

Same as Mode A, but bypass encryptor and record data

ANTENNA:

30 x 52 inch windowshade

OTHER:

LMSC back-to-back kick motors for 280 NM circular

orbit (first dual kick motors)

Solar modules: 21 fixed, 34 deployable (4 panels)

First LMSC H/S, 2nd Adcole S/S as spin axis determ. experiment

WEIGHT:

222.7 lb. (incl. 59.2 P/L) plus 44.7 lb. launcher

FAILURES:

24 days - Mode B recognizer - limited future tasking

Periodic instability in H/S circuit - later redesign

Periodic skipping of P/L clock - bad TI-IC - later

changed to Sprague IC's

Sun sensor noise pickup from command system

Link degradation - turned off in 810 days - marginal system

2/1 recorder intermittent - 578 cy. 4/1 intermit - 1495 cy.

DATES:

Mission Approval:

August 64

P/L Contract Award:

2 November 64 after much negot.

P/L Delivery

l March 65

Buv-off

15 April 65 (Maj. Kulpa/Maj. Kranske, 25X1

-SECRET/E

BIF-107W-44075-72 A

(10) 4402 - FANION I (EOB) / TRIPOS I (SEARCH) SYSTEMS

LAUNCHED:

25 June 1965 on P-206 Atlas/Agena D (4817)

ORBIT:

 270×272 NM at 107.6° inclination

DECAY:

22 August 1968 (38 months)

OTHER

DESIGNATIONS:

1965-50A, MSNA-7307/08

PAYLOAD

CONTRACTORS:

SEL (Stanford) - Fanion, ATI - Tripos (\$70K/\$105K)

TRIPOS:

4000-8000 MHz spinning 3-ft. flex rib, crystal video

receiver, no sidelobe inhibit

FANION:

C, two 4-ft. trough

25X1

25X1

antenna elements in milis cross configuration, crystal

video receivers, YIG (10 sweeps/sec) for RF

OTHER

Fanion data successfully processed by SAC

First spinning pencil beam D/F, first Aerospace

support in payload area

Spacecraft ran 25°F colder than desired -

LMSC thermal paint error

WEIGHT:

216.4 lb. (incl. 50 lb. P/L) plus 45.4 lb. launcher

AEROSPACE:

evaluated SEL Fanion proposal

evaluated data processing, recommended Space

Track for ephemeris, SAC for Fanion processing,

identified magnetic torqueing as cause of spin axis drift

FAILURES:

Launch - Fanion antenna deployment monitor

330 days/1818 cycles - Leach 100 KHz 4/1 recorder

630 days/2422 cycles - 2nd Leach 4/1 recorder -

mission terminated

Fanion very successful, Tripos marginal - sidelobe pokethrough

DATES:

Mission Approval:

April 64/October 64

P/L Contract Award:

August 64/November 64

P/L Delivery:

May 65

Buy-off

20 June 65

(L/C Lamb/Maj. Kranske)

SECRET/E

BIF-107W-44075-72A -18-

(11)4403 - MAGNUM - ABM DIRECTED COVERAGE SYSTEM

LAUNCHED:

3 August 1965 on P-206 Atlas/Agena D (4818)

ORBIT:

 270×274 NM at 107.4° inclination

DECAY:

17 June 1968 (31.2 months)

OTHER

DESIGNATIONS:

1965-62B, MSN-7312

PAYLOAD

CONTRACTOR:

ATI (Appl. Tech. Inc.), Palo Alto, Calif. (\$61K)

MISSION:

ABM Search, 100-250 MHz Noah's Ark follow-on

Rcvr. 1: 100-250 MHz with 145-178 MHz notch filter, crystal video rcvr. with swept YIG for RF, -90 dbm Rcvr. 2: 154-162 MHz, -80 dbm with recognizer,

sample and hold to preserve Hen House rise time,

1 MHz IF at 158 MHz

Rcvr. 3: 162-178 MHz or 145-161 MHz, -55 dbm

ANTENNA:

30 x 52 inch windowshade (like Pundit IV)

WEIGHT:

206 lb. (incl. 45.7 lb. P/L) plus 46 lb. launcher

FAILURES:

Antenna failed to deploy for first 16 days

142 days - multicoupler detuned causing weak links 221 days/1080 cycle - Leach 100 KHz 1/1 recorder

became intermittent

265 days - Intermittent noise from H/S, S/S (RFI)

585 days - Turned off - noisy and T/R's intermittent

(1/1 T/R-2459 cycle, 4/1 T/R-3362 cycle)

Very successful mission - First good Hen House data

DATES:

Mission Approval:

3 Feb. 65 as modified Noah's Ark

P/L Contract Award:

12 March 65 (after 1 mo. letter contract)

25X1

P/L Delivery:

1 June 65

Buy-off:

24 July 65

(L/C Lamb/Maj. Kranske)

SECRET/L

BIF-107W-44075-72A

(12) 4404 LEIGE/PLICAT - DIRECTED COVERAGE SYSTEM

LAUNCHED:

14 May 1966 on P-206 Atlas-Agena D (4824)

ORBIT:

 276×302 NM at 110° inclination

DECAY:

27 October 1970 (53.3 mos.)

OTHER

DESIGNATIONS:

1966-39B, MSNA-7310/11

PAYLOAD

CONTRACTOR:

ATI, Palo Alto, Calif.

LEIGE:

____D/F by spinning

interferometer (\$75K)

PLICAT:

Hen House D/F by PRF Doppler (\$133K)

ANTENNAS:

Orthogonal sets of two parallel 40-inch monopoles

Solar array power monitoring experiment (deployed

on cables)

WEIGHT:

224 lb. (incl. 49.3 lb. P/L) plus 46.6 lb. launcher

AEROSPACE:

delivered PRF Doppler math to NSA, worked

with LMSC to program PRF Doppler

FAILURES:

Short circuit at first turn-on disabled recorders

Solar array experiment was evaluated before turn-off

Mission was a complete failure

DATES:

Mission Approval:

10 January 1965

P/L Contract Award:

8 Oct 65/20 July 65 (Leige)

P/L Delivery:

26 Jan. 66 / 12 Oct. 65

Buy-off:

11 May 66

(Maj. Penney/Maj. Kranske)

SECRET/E

Approved for Release: 2024/08/06 C05098605

25**X**′

25**X**1

25X1

41

BIF-107W-44075-72A -20-

(13) 4405 - SAMPAN I/SOUSEA I - GENERAL SEARCH SYSTEMS

LAUNCHED:

16 August 1966 on P-206 Atlas/Agena D (4829)

ORBIT:

 274×284 NM at 93.2° inclination

DECAY:

5 March 1970 (42.6 months)

OTHER

DESIGNATIONS:

1966-74B, MSNS-7314/15

(Sousea previously called North Star, Southern Cross, Blue Sea, then South Sea because of local X-band ocean

surveillance interest)

PAYLOAD

CONTRACTORS:

SEL (Stanford) - Sampan, ATI - Sousea

SAMPAN:

2100-4000 MHz, 3-ft. dish, crystal video receiver

SOUSEA:

8000-12000 MHz, 3-ft. dish, crystal video receiver

OTHER:

First pencil beam sidelobe inhibit/omni subsystem

and pulse count subsystem

First magnetic balance before launch

Spin axis drift prediction software developed

Switch to record sun sensor rather than H/S omitted -

command limitations

WEIGHT:

267 lbs. (incl. 90.6 lb. P/L) plus 43 lb. launcher

AEROSPACE:

FAILURES:

evaluated Sampan proposal

. . .

25X1

25X1

evaluated new software/magnetic and dynamic balance

H/S destroyed by antenna cover at launch

Solar array hung up for 9 revs., deployment limit switch failed

400 days/2727 cycles - Leach 100 KHz 2/1 recorder

424 days/2878 cycles - Leach 100 KHz 2/1 recorder

Killed by turning links on - one link active again in 1969

Marginal system - no D/F - work around schemes failed

DATES:

Mission Approval:

Nov. 1965

P/L Contract Award:

18 Feb. 66 / 31 Jan. 66 (Sousea)

P/L Delivery:

29 Apr. 66 / 31 May 66

Buy-off

6 Aug. 66

(Maj. Penney/Maj. Kranske)

SECRET/E

BIF-107W-44075-72A

(14) 4406 - FANION II (EOB) / TRIPOS II (SEARCH) SYSTEMS

LAUNCHED:

16 September 1966 on P-206 Atlas/Agena D (4828)

ORBIT:

 251×269 NM at 94° inclination

DECAY:

9 May 1968 (19.8 months)

OTHER

DESIGNATIONS:

1966-83B, MSNS 7317/18

PAYLOAD

CONTRACTORS:

EDL (Sylvania) - Fanion II, ATI - Tripos II

FANION:

4900-5150 MHz crossed fan beam system

TRIPOS:

4000-8000 MHz 3-ft. dish pencil beam with sidelobe

inhibit/main beam collection spirals on booms

OTHER:

Both systems used crystal video receivers, YIG's for RF

First use of Leach 150 KHz recorders (upgrade of 100 KHz)

First use of 3 sun sensors for body axes measurement

WEIGHT:

223 lbs. (incl. 50.4 lb. P/L) plus 43 lb. launcher

FAILURES:

High RFI and down link spin modulation

150 MHz recorder sticky tape problems in test

53 days/297 cycles - 150 KHz 4/1 recorder

82 days/530 cycles - 150 KHz 4/1 recorder

82 days - turned off - marginal system due to noisy links

DATES:

Mission Approval:

15 March 66

P/L Contract Award:

5 Jan. 65 (4402 QTM)

P/L Delivery:

15 July 66 / 6 May 65

Buy-off:

30 August 1966

(Maj. Penney/Maj. Kranske)

25X1

SECRET/E

BIF-107W-44075-72A -22-

(15) 4408 - SLEWTO (DC) / FANION III (EOB) SYSTEMS

LAUNCHED: 9 May 1967 on P-846 Thorad/Agena D (1634)

ORBIT: 301 x 437 NM at 85° inclination

DECAY: 297×425 NM in March 1970 (long life orbit)

OTHER

DESIGNATIONS: 1967-43B, MSNS-7316/19

PAYLOAD EDL(Sylvania) - Fanion III

CONTRACTORS: ESL (Electromag. Sys. Lab.) Sunnyvale - Slewto

ESL is a new company - former EDL people

SLEWTO: First pre-D system, 12 inch monopole antenna,

recognizer and delay line to track Hen House RF - 154-162 MHz, parallel 600 KHz pre-D to new 1 MHz recorder and 130 KHz pre-D to 150 KHz recorder,

centered to + 50 KHz

FANION III: (Also called Pennon) 4900-5150 MHz, 4 ft. crossed fan

beam antennas, crystal video receivers with sidelobe

inhibit, no omni data recorded

OTHER: First 1 MHz recorder, EIMAC S-band transmitter, pre-D

New 375 MHz 39 command system

WEIGHT: 223.9 lbs. (incl. 56.8 lb. P/L) plus 45.1 lb. launcher

FAILURES: Bad ride to high orbit (Agena burn to depletion)

3 days - S-band transmitter lost pressure and arced over

Intermittent operation of Fanion recorder

75 days - Fanion power supply

94 days - total system failure of unknown cause

Success - marginal

DATES: Mission Approval: Jan. 66 / May 66

P/L Contract Award: 27 June 66 / 3 June 66

P/L Delivery: 13 Jan. 67 / 25 Oct. 66

Buy-off 2 May 1967 (L/C Penney/Maj. Kranske)

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A -23-

25X1

(16)4409 - SAVANT I - TELEMETRY SYSTEM

LAUNCHED:

16 June 1967 on P-846 Thorad-Agena D (1633)

ORBIT:

 273×275 NM at 80.2° inclination

DECAY:

22 October 1968 (16.2 months)

OTHER

DESIGNATIONS:

1967-62B, MSN-7320, IRON-1873

PAYLOAD

CONTRACTOR:

ESL (Electromag. Sys. Lab.), Sunnyvale, Calif.

MISSION:

Collect (0.5 MHz Pre-D) USSR Types B&M telemetry

TECHNIQUE:

Step synthesizer over frequencies in priority order, cancel noise with fixed TV filters and dual tracking FM notch filters, recognize 6, 12.8, or 25.6 KBPS PPM

TLM rates, lock to recognized signal and turn-on recorder

ANTENNA:

5 x 7 ft. windowshade (high drag)

OTHER:

Dual 1 MHz recorders, EIMAC transmitters (2232 & 2282 MHz)

First solid spin rockets, double jointed downlink antenna boom

WEIGHT:

242.5 lbs. (incl. 54.8 lb. P/L) plus 42.5 lb. launcher

FAILURES:

Warmup problem on EIMAC 2282 MHz transmitter after 3 days (took up to 430 seconds to reach full power later

in mission)

36 days - Decoder IC failed causing false command -

worked around

259 days/724 cycles - 1 MHz 1/1 recorder broke tape 494 days - reentry - 2nd recorder good at 1505 cycles

Recognizer had high false alarm rate

Regarded as good system - led to 4419 follow-on

DATES:

Mission Approval:

July 66

P/L Contract Award:

6 Sept. 66

P/L Delivery:

7 Apr. 67

Buy-off:

7 June 1967

(L/C Penney/Maj. Kranske)

BIF-107W-44075-72 A

(17) 4410 - FACADE - ABM SEARCH SYSTEM

LAUNCHED:

2 November 1967 on P-846 Thorad/Agena D (1639)

ORBIT:

 250×280 NM at 81.7° inclination

DECAY:

28 March 1969 (16.9 months)

OTHER

DESIGNATIONS:

1967-109B, MSN-7321

PAYLOAD

CONTRACTOR:

EDL (Sylvania), Mountain View, Calif.

MISSION:

ABM signal search, 250-2250 MHz in two systems

TECHNIQUE:

Superheterodyne receiver, 0.1 sec/step, video recording 250-1000 MHz @ 1.25 MHz/step, 3 x 4 ft. windowshade

1000-2250 MHz @ 2 MHz/step, 6 in. conical spiral antenna

OTHER:

First 24-hour clock (EDL) - replaced 16384 second Adcole clock

First ground plane fingers on VHF downlink antenna

WEIGHT:

228. 4 lbs. (incl. 64.1 lb. P/L) plus 44 lb. launcher

AEROSPACE:

statistical studies justified ABM series of P-989's

25X1

for QRC, of which 4410 was the first.

TMA assigned TD of PRC command software development

FAILURES:

75 days - 1000-2250 MHz power supply

97 days - 250-1000 MHz power supply

150 KHz 2/1 recorders both good at 863 cycles

Used for SCF training until reentry

Success was outstanding (much new ABM intelligence)

DATES:

Mission Approval:

January 67

P/L Contract Award:

January 67

P/L Delivery:

July 67

Buy-off:

26 October 1967

(L/C Penney/Maj. Kranske)

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A -25-

(18) 4412 - TIVOLI I - ABM TI SYSTEM

LAUNCHED:

24 January 1968 on P-846 Thorad/Agena D (1638)

ORBIT:

 257×291 NM at 81.7° inclination

DECAY:

4 March 1970 (25.3 months)

OTHER

DESIGNATIONS:

1968-8B, MSN-7324, IRON-6236

PAYLOAD

CONTRACTOR:

ESL (Electromag. Sys. Lab) Sunnyvale, Calif.

MISSION:

Obtain 750 KHz pre-D samples of ABM signals in the

100-4020 MHz range (for TI)

TECHNIQUE:

Step synthesizer once/4 sec. over command RF range of

interest (1 or 4 MHz/step, one folded pre-D mode)

ANTENNAS:

100-520 MHz 2.5 x 5 ft. windowshade spiral

480-2020 MHz 18 inch conical spiral

1980-4020 MHz dual 6 inch conical spirals

WEIGHT:

274 lbs. (incl. 79.9 lb. P/L) plus 47 lb. launcher

FAILURES:

Warmup problem on EIMAC 2282 MHz transmitter from

launch (up to 400 seconds to reach full power later in mission)

Occasional spurious commands due to high receiver sensitivity

211 days/644 cycles - 1 MHz 1/1 recorder failed (stuck)

330 days - EDL system clock - Adcole command timer

not affected

469 days/1067 cycles - Final 1 MHz recorder stuck

(intermittent from day 247)

Very successful system

DATES:

Mission Approval:

January 67

P/L Contract Award:

January 67

P/L Delivery:

12 Nov. 67

Buy-off

15 January 1968

(L/C Penney/Maj. O'Connell)

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A -26-

(19) 4411 LAMPAN I / SAMPAN II - ABM SYSTEM

LAUNCHED:

14 March 1968 on P-846 Thorad/Agena D (1640)

ORBIT:

 $263 \times 280 \text{ NM}$ at 83.1° inclination

DECAY:

4 January 1970 (21.7 months)

OTHER

DESIGNATIONS:

CONTRACTORS:

1968-20B, MSNS-7322/23, IRON-7076

PAYLOAD

Lampan - ATI (Appl. Tech. Inc.), Palo Alto, Calif.

Sampan - SEL (Stanford), Palo Alto, Calif.

MISSION:

Collect and locate sources of ABM signals in the 1000-4000 MHz range (Lampan = 1000-2100 MHz,

Sampan = 2100-4000 MHz)

TECHNIQUE:

Spinning 6 ft. dish with two sidelobe inhibit spirals on booms, crystal video receivers with swept YIG's for RF, proportional video stretching to preserve PW

WEIGHT:

284.9 lbs. (incl. 94 lb. P/L) plus 48.6 lb. launcher

FAILURES:

Downlink antenna incompletely deployed - strong spin

modulation

Initial short in RO amplifier caused strong link 3 noise

RT TLM VCO noisy and frequency off

CMD rate reduced from 1000 to 625 PPS to get RT

TLM verification

144 days/1146 cycles - 150 KHz 2/1 recorder failed

368 days/3068 cycles - Final 2/1 recorder failed

Links turned on in April 1969 to kill the system, but \$\delta 3\$

at 238 MHz continued active until reentry

Marginal mission

DATES:

Mission Approval:

January 67

P/L Contract Award:

Control of the second

January 67

P/L Delivery:

1 November 67

Buy-off:

6 March 1968

ff:

(L/C Penney/Maj. O'Connell)

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A -27-

(20) 4420 TRIPOS III/SOUSEA II - ABM SEARCH SYSTEM

LAUNCHED:

20 June 1968 on P-846 Thorad/Agena D (1643)

ORBIT:

243 x 275 NM at 85.2° inclination

DECAY:

10 January 1970 (18.7 months)

BESIGNATIONS:

1968-52B, MSNS-7326/27, IRON-5259 (originally named Pansam/Xylene)

PAYLOAD

CONTRACTOR:

AIL, Long Island

MISSION:

Collect and locate sources of ABM signals in the

4000-12,000 MHz range

TRIPOS:

4000-8000 MHz with 3 ft. dish, two omnis

SOUSEA:

8000-12,000 MHz with 1.5 ft. dish, two omnis

TECHNIQUE:

Crystal video receiver, omni sidelobe inhibit and

main beam collection, proportional stretching for PW, filter bank for frequency to + 30 MHz on each pulse

OTHER:

First P-989 for which LMSC had primary payload data

processing

WEIGHT:

278.7 lbs. (incl. 97.5 lb. P/L) plus 46 lb. launcher

AEROSPACE:

generated P/L data processing requirements

25X1

25X1

for LMSC, later monitored by TMA

FAILURES:

Power control unit failed in system test - replaced

by 4413 PCU

Days 3-14, low solar array power

318 days - Sousea PCM subsystem (RF measurement) and

TSG due to power supply failure

510 days - Transmitter 3

572 days - reentered, 4644 cycles on both 150 KHz

2/1 recorders

Very successful mission

DATES:

Mission Approval: March 67

P/L Contract Award:

May 67

P/L Delivery:

1 Feb. 68

Buy-off:

11 June 1968

(L/C Penney/Maj. O'Connell)

SECRET/E

BIF-107W-44075-72A -28-

(21) 4413 VAMPAN - ABM SEARCH SYSTEM

LAUNCHED:

18 September 1968 on P-846 Thorad/Agena (1645)

ORBIT:

269 x 278 NM at 83.2° inclination

DECAY:

27 September 1969 (12.3 months) - very high drag

OTHER

DESIGNATIONS:

1968-78B, MSN-7325, IRON-8595/2014

PAYLOAD

CONTRACTOR:

EDL (Sylvania) Mountain View, Calif.

MISSION:

Collect and locate sources of ABM signals in the

100-1000 MHz range

TECHNIQUE:

Spinning interferometer with antenna pairs

100-400 MHz, 4 x 4 spirals, 0.6 MHz RF steps each spin

400-1000 MHz, spirals on 4 ft. ext., 1.2 MHz steps

each spin

OTHER:

First spinning interf., second LMSC data processing

WEIGHT:

259.4 lbs. (incl. 76.9 lb. P/L), plus 46.1 lb. launcher

AEROSPACE:

Source selection reversed LMSC selection of GE, TMA provided TD of LMSC software development

FAILURES:

12 test failures - open relay coil, 10 IC's, mixer-filter

Much redesign and late delivery by EDL

Solar array hung up for first day

2 days - sun sensor shift register bit 5 always zero -

bad solder connection

60 days - bridge circuitin payload failed - corrected

in software by recalibration

375 days - reentered, 3300 cycle on 150 KHz 2/1 recorders

Successful mission, locations over 600 NM swath

DATES:

Mission Approval:

January 67

P/L Contract Award:

19 June 67

P/L Delivery:

30 Aug. 68 (vs 1 March contract date)

25X1

Buy-off:

6 September 1968

(L/C Penney/Maj. O'Connell)

SECRET/E

BIF-107W-44075-72A

4414, 4415, 4416 - NON-SP SYSTEMS

These were out-prioritied for rides by ABM series, returned to for spare parts

4414/15:

Aztecs - sponsored by Wright-Patt. Avionics Lab.

Mission: Measure space degradation of optical surfaces

Innovation: Spin axis aimed at sun and controlled

4416:

Calsat - sponsored by USAF-NRD/SSD

Carried SGLS, other SCF, FPS-16, other ETR R and R

equipment plus flashing light for optical tracking

Mission: Range instrumentation calibration

Data reduction software was not developed and system

was stored at VAFB.

			Weight	
System	Approval	Delivery	On-Orbit	P/L
4414	12-20-65	8-14-67	263.3	69.6
4415	12-20-65	8-8-66	263.3	69.6
4416	1-27-66	12-1-67	231.9	74.6

Vehicle 4415 was used for spare parts following a stop work order on 8 Aug. 66.

Vehicle 4414 was cannibalized after 14 Dec. 67.

Calsat was taken out of storage in June 70 for display by LMSC at a space conference at Goddard and later delivered to the Air Force Museum.

SECRET/E

BIF-107W-44075-72A

25X1

25X1

(22) 4418 - TIVOLI II - TI SYSTEM

LAUNCHED:

19 March 1969 on P-846 Thorad/Agena D (1649)

ORBIT:

 269×280 NM at 83.1° inclination

DECAY:

6 December 1971 (32.6 mos)

OTHER

DESIGNATIONS:

1969-26B, MSN-7330, IRON-2285

PAYLOAD

CONTRACTOR:

ESL, Sunnyvale, Calif.

MISSION:

Obtain 750 KHz pre-D samples from 50 to 4020 MHz

DIFFERENCES FROM 50-100 MHz subsystem added for

4412 TIVOLI:

search (two monopole antennas)

Extended command capability (triple read-in)

OTHER:

First heavy P-11 (80 lbs. heavier, 50% power increase)

Downlink tones used to calibrate system frequency response

WEIGHT:

333.6 lbs. (incl. 85.2 lb. P/L) plus 55.3 lb. launcher

AEROSPACE:

Provided TD of P/L mods and heavy vehicle design

FAILURES:

Power Control Unit failed in system test - unit from

4417 was substituted

7 days - LO failed causing 13% reduction in RF coverage

70 days - EIMAC S-band transmitters developed warmup problems

180 days - battery LVCO disable relay failed (no impact)

202 days/792 cycles - First 1 MHz recorder failed 400 days - limited tasking, noisy data, 1600 cycles

on 2nd recorder

520 days - turned off (21 Aug. 70)

Overall success regarded as good

DATES:

Mission Approval:

orig. = Jan. 67, mods = 26 July 68

P/L Contract Award:

Jan. 68, 2 Aug. 68

P/L Delivery:

23 Dec. 68

Buy-off:

10 March 69

(L/C Penney, Maj. O'Connell)

SECRET/E

BIF-107W-44075-72A -31 -

(23)4417 LAMPAN II/SAMPAN III - GS SYSTEM

LAUNCHED:

1 May 1969 on P-846 Thorad/Agena D (1651)

ORBIT:

221 \times 253 NM at 65.7° inclination

DECAY:

16 February 1970 (9.6 months)

OTHER

DESIGNATIONS:

1969-41B, MSNS-7328/29, IRON-1721

PAYLOAD

CONTRACTOR:

ATI, Division of ITek, Palo Alto, Calif.

MISSION:

Collect and locate (spinning 6 ft. dish) over the RF ranges

Lampan: 1000-2100 MHz Sampan: 2100-4000 MHz

DIFFERENCES

FROM 4411

LAMPAN/SAMPAN:

1200-1470 MHz CW microwave search subsystem added Stanford box to dump all PRF's of 374 in Sampan Payload PCM frequency and PW rather than swept YIG/VCO's

Heavy P-11 with dual battery system

WEIGHT:

364.7 lbs. (incl. 110.4 lb. P/L) plus 54.6 lb. launcher

SP-7 criticism for exceeding 400 lb. max. weight (419.3 lb.)

FAILURES:

Two Horizon Sensors failed in system test

One launcher spring stuck causing 20° spin axis error Strong 100 pps noise from CW subsystem in Sampan data

56 days - EDL system clock failed

200 days - Noticeable speed variation on one recorder

291 days - Reentered, 2308 cycles on both 150 KHz

2/1 recorders - fairly successful mission

DATES:

Mission Approval:

Orig. = Jan. 67, mods = 1 Sept. 68

P/L Contract Award:

Jan. 68, Sept. 68

P/L Delivery:

2 Jan. 69

4-25-69

Buy-off:

(L/C Penney/Maj. O'Connell)

BIF-107W-44075-72A -32-

(24)4419 - SAVANT II - TELEMETRY SYSTEM

LAUNCHED:

22 September 1969 on P-846 Thorad/Agena D (1653)

ORBIT:

 262×271 NM at 85.17° inclination

DECAY:

16 May 1971 (19.8 months)

OTHER

DESIGNATIONS:

1969-79B, MSN-7336, IRON-4710

PAYLOAD

CONTRACTOR:

ESL (Electromag. Syst. Lab.), Sunnyvale, Calif.

MISSION:

DIFFERENCES FROM 4409 SAVANT:

3 frequencies added, 3 foot monopole antenna used for 4 lower frequencies, 5 x 7 foot windowshade spiral for 6 higher frequencies, improved recognizer and payload status telemetry, RT status telemetry transmitted

at both VHF and S-band

Heavy P-11 with dual power system, 3 recorders

WEIGHT:

318.2 lbs. (incl. 62.1 lb. payload) plus 51.5 lb. launcher

AEROSPACE:

attributed Savant II approval to Memo BIF-107-440071-68 on telemetry sampling

FAILURES:

Launch to 35 days - 2232.5 MHz transmitter completely degraded (EIMAC design - bought out by Walkins-Johnson)

7 days - Link switch or connector to north antenna

70 days - Payload clock failed removing clocking tone from

tape, remaining transmitter getting noisier

191 days - Horizon sensor failed

420 days/435 - 1 MHz recorder failed (one of three)

595 days - Turned off with 1630 cycles on second 1 MHz recorder, 1371 on the other - fairly successful mission

DATES:

Mission Approval:

23 Dec. 68 (mod. 4409 QTM)

P/L Contract Award:

1 Jan. 69

P/L Delivery:

1 June 69

Buy-off:

9-5-69 (L/C Penney/Maj. O'Connell)

Approved for Release: 2024/08/06 C05098605

25X1

BIF-107W-44075-72A

(25) 4407 - WESTON - COMINT COPY SYSTEM

LAUNCHED:

30 September 1969 on P-770 Thorad/Agena D (2706 Poppy)

ORBIT:

 247×266 NM at 69.6° inclination

DECAY:

30 October 1970 (13 mos.)

OTHER

DESIGNATIONS:

1969 - 82A, MSN - 7313, IRON-1807

PAYLOAD

CONTRACTOR:

HRB-Singer, State College, Penn.

MISSION:

Collect and encrypt (200 KBPS) video samples of voice signals in the 60-70 MHz and 360-420 MHz ranges

ANTENNAS:

60-70 MHz 2.5 x 3 foot flat spiral windowshade

360-420 MHz 2 ft. log periodic (oil derrick)

TECHNIQUE:

Stepped superheterodyne receiver with -110 dbm sensitivity

Limiter discriminator on 40 KHz IF passband

Recognize 300 or 500 Hz tones, teletype, and/or two channel baseband voice energy spectrum to lock receiver

Count cycles at 21.4 MHz IF for precision RF

WEIGHT:

248.2 lbs. (incl. 73.9 lb. payload) plus 45.5 lb. launcher

OTHER:

Long painful development - then ABM series forced two

year delay in ride

FAILURES:

50 days - instability in horizon sensor circuit

118 days/571 cycles - 150 KHz 2/1 recorder

200 days - battery very sick - tasked once per day

286 days - final recorder sticking

321 days - power system purposely killed (17 Aug.)

Overall success regarded as fair

DATES:

Mission Approval:

April 65

P/L Contract Award:

2 Aug. 65/5 Sept. 68 (mods)

P/L Delivery:

July 67/Dec. 68

Buy-off:

25 June 68/5 Sept. 69

(L/C Penney/Maj. O'Connell)

25X1

SECRET/E

BIF-107W-44075-72A

(26) 4422 - TIVOLI III - TI SYSTEM

LA UNCHED:

4 March 1970 on P-846 Thorad/Agena D (1656)

ORBIT:

 248×278 NM at 88.14° inclination

DECAY:

10 November 1971 (20.2 mos.)

OTHER

DESIGNATIONS:

1970 - 16B, MSN-7335, IRON-3402

PAYLOAD

CONTRACTOR:

ESL, Sunnyvale, Calif. (\$0.82M)

MISSION:

Obtain 750 KHz pre-D samples from 50 to 4020 MHz

DIFFERENCES

FROM 4418 TIVOLI:

290 MHz main beam intercept system added

Used magnetic spin axis torqueing as test of technique

for 4427 Arroyo

First solar array disconnect system for positive silencing

of disabled birds (see 4411/4405 failure notes)

WEIGHT:

343.45 lbs. (incl. 79 lb. P/L) plus 51.8 lb. launcher

AEROSPACE:

Recommended spin axis torqueing test

Determined cause of WJ transmitter warmup problem

Identified link problem as multicoupler arcing

FAILURES:

Day 3-103 - Bad track on recorder No. 2 (recovered)

Days 5-60 - Bad links - multicoupler arcing

38 days - Recorder No. 3 blew fuse (failed after 121 cycles)

96 days - more arcing - cured by spin axis torqueing

to cool S/C

160 days - 2232.5 MHz WJ transmitter got noisy

577 days (2 Oct. 71) - Turned off with 3884 cycles

on remaining 1 MHz recorder

Fairly successful mission

DATES:

Mission Approval: 1

10 Dec. 68

P/L Contract Award: 28 Mar. 69

P/L Delivery:

12 Nov. 69

Buy-off

6 Feb. 70

(L/C Penney/Maj. O'Connell)

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A

(27) 4421 - TRIPOS IV/SOUSEA III - GS SYSTEM

LAUNCHED:

20 May 1970 on P-846 Thorad/Agena D (1657)

ORBIT:

 261×275 NM at 83.11 o inclination

DECAY:

227 NM spinning at 7 rpm (vs initial 55 rpm) by 10-1-72

OTHER

DESIGNATIONS:

1970-40B, MSNS-7332/33, IRON-8520

PAYLOAD

CONTRACTOR:

AIL, Long Island, NY (\$1.43M)

MISSION:

Collect and locate sources of pulsed and CW signals

TRIPOS:

4000-8000 MHz with 3 ft. dish, two omnis

SOUSEA:

8000-12000 MHz with 1.5 ft. dish, two omnis

DIFFERENCES FROM 4420

TRIPOS/SOUSEA:

Swept filter added for CW. Three 1 MHz recorders with 250 KBPS (freq., PW, and PA) PCM at 2/1 slowdown.

S-band downlinks

WEIGHT:

333.3 lbs. (incl. 86 lb. P/L) plus 52.4 lb. launcher

AEROSPACE:

Specified CW mode, PCM approach, and beam sharpening

on Tripos antenna (using spiral difference mode)

FAILURES:

Recorders leaked and blew fuses in test

Sprayed with oil in vacuum test

Has 38 bad lot Fairchild IC's in P/L (as did 4420)

Day zero - 1 of 3 sun sensors out

27 days - blew fuse on one recorder (61 cycles)

61 days - Relay in PCU hung up, no trickle charge

264 days - WJ transmitter got too noisy to use

293 days - 2nd 1 MHz recorder stuck after 1055 cycles

850 days - still being tasked several times per day with noisy transmitters and one recorder (over 2400 cycles)

Fairly successful mission.

DATES:

Mission Approval:

10 Dec. 68

P/L Contract Award:

6 Feb. 69

P/L Delivery:

24 Feb. 70

Buy-off:

8 May 70

(Col. Penney/Maj. O'Connell)

SECRET/E

Approved for Release: 2024/08/06 C05098605

25**X**′

SECRET/D

BIF-107W-44075-72A

(28) 4423 - TOPHAT I - COMINT SYSTEM

LAUNCHED:

18 November 1970 on P-846 Thorad/Agena (1659)

ORBIT:

261 x 276 NM at 83° inclination

DECAY:

251 NM, 23 rpm by 10-1-72

OTHER

DESIGNATIONS:

MSN-7334, IRON-6829, 1970-98B

PAYLOAD

CONTRACTOR:

LTV, Garland, Texas (\$2.79M)

MISSION:

Map and copy troposcatter links and beams over the

450-1000 MHz range

CONFIGURATION:

Spinning interferometer with back-to-back pairs of conical spiral antennas (first pneumatic deployment), breakout and record selected 12 voice channels plus tones and teletype, 1 MBPS encrypt on playback with second recorder track on 1.7 MHz VCO, fast RF search

with recognition signal lock-on. Mapping data is 32 KBPS PCM.

RECORDERS:

Three back-to-back 150 KHz 1/1 recorders

WEIGHT:

341.1 lbs. (incl. 75.7 lb. P/L) plus 51.3 lb. launcher

AEROSPACE:

Sold concept and helped specify the configurations

OTHER:

Greatest P/L delivery slip since 4413 (originally

scheduled for February 1970)

Original encryption rate was 1.5 MBPS, but SCF can

only handle up to 1.024 MBPS

First use of Conic transmitter to back up Watkins-Johnson

FAILURES:

None after 22 months on orbit - Most healthy P-989

system in program history

Spurious commands (no mission impact)

Very successful mission

DATES:

Mission Approval: 10 Dec. 68

P/L Contract Award: 10 Mar. 69

P/L Delivery:

Early Aug. 70

Buy-off:

Oct. 70

(L/C Jakes/Maj. Rudolph)

25X1

SECRET/E

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A

$(29) \underline{4427 - ARROYO}$	- COMINT MAPPING SYSTEM		
LAUNCHED:	10 September 1971 on P-846 Thorad/Agena (1662)		
ORBIT:	$266 \times 274 \text{ NM at } 75.1^{\circ} \text{ inclination}$		
DECAY:			
OTHER DESIGNATIONS:	MSN-7337, IRON-7681, 1971-76B		
ARROYO:			
PAYLOAD CONTRACTOR:	AIL, Long Island, NY (\$2.84M)		
MISSION:	Map to 95% confidence, microwave towers over the 1200-2200 MHz and 3400-3900 MHz ranges		
CONFIGURATION:	Spinning 6 ft. dish with beam split feed down spin axis for con scan, spin axis torqueing, phase measuring payload, fast RF search with recognition lock-on, pairs of sidelobe inhibit antennas for interferometer main beam D/F, precision ERP and RF measurements		
RECORDERS:	Two back-to-back 150 KHz 4/1 recorders		
WEIGHT:	362 lbs. (incl. 78.4 lb. P/L) plus 55 lb. launcher		
AEROSPACE:	Sold concept and helped specify configuration 25X1		
OTHER:	First spacecraft with spin rate control		
	First system with steady PCM format. First satellite in SCF net with more than 10,000 separate commands (13,344)		
	Originally mated with March P-846 ride - launcher stayed on		
FAILURES:	Payload malfunction in Feb. 71 test at VAFB - many workmanship deficiencies		
	30 days - complete failure of payload (phase-lock loop)		
	355 days, balance boom separated causing 90° spin axis shift in body coordinates		
	360 days, sun sensor shift register failed		
	System did not map to better than accuracy (no bias analysis done) but there is interest in a follow-on		
DATES:	Mission Approval: 30 June 69 P/L Contract Award: 15 Sept. 69 P/L Delivery: 31 Oct. 70 Buy-off: 5 Aug. 71 (L/C Wippermann/Capt. Bryson		

SECRET/E

CREITE

BIF-107W-44075-72A -38-

4425 - MABELI - ABM MAIN BEAM TI SYSTEM

LAUNCHED:

20 January 1972 on P-467 Titan III-D (SV-2)

ORBIT:

 254×299 NM at 96.5° inclination

DECAY:

271 NM, 40 rpm by 10-1-72

OTHER

DESIGNATIONS:

MSN-7339, IRON-7719, 1972-002D

MABELI:

MAin BEam tivoLI (first acronym)

PAYLOAD

CONTRACTOR:

ESL, Sunnyvale, Calif. (\$3.9M)

MISSION:

Track frequency and measure ERP to +0.5 db plus polarization on Hen House Dog House

(387-426 MHz), Big Screen (862-964 MHz), and

Try Add (1500-2500 MHz)

CONFIGURATION:

Flat spiral with two RHC and two LHC windings for Hen House, separate RHC and LHC conical spirals for others, compare power and phase for polarization ellipse, delay line technique for frequency tracking, pre-D for fine frequency/coding, spin axis control

(on all P-467 launches)

RECORDERS:

Three back-to-back 1 MHz recorders at either 1/1 or

4/1 ratio (first dual speed ratio recorders)

DATA:

Steady 200 KBPS PCM (incl. clock and attitude data)

plug analog

WEIGHT:

380 lbs. (incl. 93 lb. P/L) plus 55 lb. launcher

AEROSPACE:

Sold concept and helped specify configuration

FAILURES:

0 day - Limit switches failed to indicate deployment of

one solar array, antenna, balance boom

Dog House antenna problem - up to 4 db discrepancy in

ERP measurements

72 days - Pre-D subsystem failure reduced coverage of Try Add band by 12% including small Try Add frequency

180 days - Both WJ transmitters very noisy - 2 conics OK Healthy system, but customer interest in data appears low

DATES:

Mission Approval:

3 April **70**

P/L Contract Award: 16 Apr. 70

P/L Delivery:

23 Feb. 71

Buy-off:

5 Nov. 71 (L/C Wippermann/Capt. Bryson)

Approved for Release: 2024/08/06 C05098605

25X1

Secret/e

BIF-107W-44075-72A -39-

4425 - URSALA-I - EOB/GS SYSTEM (31)

LAUNCHED:

7 July 1972 on P-467 Titan III-D (SV-3)

ORBIT:

266 x 273 NM at 96.4° inclination

DECAY:

267 NM, 56 rpm by 10-1-72

OTHER

DESIGNATIONS:

MSN-7338, IRON-7803, 1972-052C

URSALA:

Universal Radar Search And Location Acquisition

PAYLOAD

CONTRACTOR:

Motorola, Scottsdale, Ariz. (\$3.5M for first unit)

MISSION:

Collect and locate sources of pulsed signals to

CW signals to over the 2000-12000 MHz

frequency range

CONFIGURATION:

Spinning pencil beam with 3 ft. (2000-8000 MHz) and 6 ft. (4000-12000 MHz) antennas, pulse by pulse D/F with multimode flat spiral feed, filter bank for 3 RF's per pulse, swept filter and centroiding for CW, RF to + 18 MHz, command 2000 MHz at a time, 245 KBPS all PCM data format for digital processibility, three back-to-back 1 MHz 4/1 recorders. Spin rate control to 55 + 1 rpm to preserve validity of bias analysis.

WEIGHT:

390.9 lbs. (incl. 104.6 lb. P/L) plus 54.4 lb. launcher (In the Motorola proposal, the P/L weight was 69 lbs.)

AEROSPACE:

Helped sell concept, specify configuration, and identify corrective action for the many development problems.

OTHER:

Greatest P/L delivery slip in program history (10 mos.)

Bad lot of TI SNR 54L IC's - 6 failures during payload

test span

First of a new series of EOB systems

DATES:

Mission Approval:

27 Feb. 70

P/L Contract Award:

4 May 70

P/L Delivery:

1 Feb. 72 (vs 5 Apr. 71

contract date)

Buy-off:

24 May 72

(L/C Wippermann/Capt. Bryson)

Approved for Release: 2024/08/06 C05098605

25X1

Approved for Release: 2024/08/06 C05098605

ECRET/E

BIF-107W-44075-72A -40-

25X1

25X1

25X1

4426 - URSALA-II - EOB/GS SYSTEM (32)

LAUNCH:

Scheduled for April 1973 on P-467 Titan III-D (SV-5)

OTHER

DESIGNATIONS:

MSN-7342, IRON-7705

PAYLOAD

CONTRACTOR:

Motorola, Scottsdale, Ariz. (\$2.7M)

MISSION:

Collect and locate sources of pulsed signals to

over the 2000-12000 MHz trequency CW signals to

range

DIFFERENCES FROM 4425

URSALA:

Essentially none - built in parallel and had same 10 month

P/L delivery schedule slip

WEIGHT:

391 lbs. (incl. 104.6 lb. P/L) plus 55 lb. launcher

AEROSPACE:

Helped sell concept, specify configuration, and identify

corrective action for development problems

OTHER:

Bad lot of TI SNR 54L IC's - 2 failures in payload

test at Motorola

DATES:

Mission Approval:

27 Feb. 70

P/L Contract Award:

4 May 70

P/L Delivery:

26 June 72

Buy-off:

Feb. 73

(L/C Wippermann/Capt. Bryson)

BIF-107W-44075-72A -41 -

4428 - TOPHAT-II - COMINT SYSTEM

LAUNCH:

Scheduled for January 1974 on P-467 Titan III-D (SV-7)

OTHER

DESIGNATIONS:

MSN-7340, IRON-6935

PAYLOAD

CONTRACTOR:

E-Systems (LTV), Garland, Texas (\$2.2M)

MISSION:

Map to and copy troposcatter links and other

CW emitters over the 450-1000 MHz range

DIFFERENCES FROM

4423 TOPHAT:

Main beam mapping mode was dropped and a fixed

tuned receiver channel was added to increase probability of map and copy of a high priority short on-time signal.

WEIGHT:

350 lbs. (incl. 80 lb. P/L) plus 55 lb. launcher

OTHER:

Success of Tophat-I resulted in easy approval of

Tophat-II

Last P-989 system of current design (375 MHz command link, non-SGLS, current structure, and rocket motors)

DATES:

Mission Approval:

Aug. 71

P/L Contract Award:

Oct. 71

P/L Delivery:

May 73

Buy-off:

Oct. 73

Approved for Release: 2024/08/06 C05098605

BIF-107W-44075-72A -42-

(34)4430 - URSALA-III - EOB/GS SYSTEM

LAUNCH:

Scheduled for January 1974 on P-467 Titan III-D (SV-7)

OTHER

DESIGNATIONS:

MSN-7343, IRON-6239

PAYLOAD

CONTRACTOR:

Motorola, Scottsdale, Ariz. (\$3.2M)

MISSION:

Collect and locate sources of pulsed signals to

over the 2000-12000 MHz frequency CW signals to

range.

DIFFERENCES FROM 4425/26 URSALAS:

First of a new series of heavy P-989 systems with larger rocket motors, greater solar array area, new power control,

SGLS (cmd, range, and PCM TLM), and larger volume

P/L improvements include elimination of RF overlap between antennas, several db sensitivity improvement, and improved RF resolution (from 32 MHz to 5 MHz)

For reliability the 1 MHz recorders will be replaced by 150 KHz recorders. The P/L buffer storage will be increased from 64 to 512 pulses to accommodate a 245 to 32 KBPS recording rate reduction. Onboard data rate control.

WEIGHT:

533 lbs. (incl. 150 lb. P/L) plus 57 lb. launcher

OTHER:

The larger rocket motors will permit several degrees plane change from the P-467 sun synchronous orbit and thus establish sufficient orbital plane precession to prevent the grouping of future P-989 spacecraft in a common

orbital plane.

DATES:

Mission Approval:

28 Feb. 72

P/L Contract Award:

May 72

P/L Delivery:

June 73

Nov. 73

Buy-off:

Approved for Release: 2024/08/06 C05098605

25X1

BIF-107W-44075-72A

(35) 4429 - RAQUEL - GS/TI SYSTEM

LAUNCH:

Scheduled for April 1974 on P-467 Titan III-D (SV-8)

OTHER

DESIGNATIONS:

MSN-7341, IRON-6239

RAQUEL:

Radar AcQuisition Equipment with Location

PAYLOAD

CONTRACTOR:

E-2 Systems (LTV), Garland, Texas (\$3.2M)

MISSION:

Collect and locate sources of pulsed and CW signals to accuracy over the 4000-18000 MHz frequency

range

Obtain 750 KHz pre-D samples of CW signals

CONFIGURATION:

Spinning pencil beams using a 3 ft. unfurled parabola for 4-8 GHz, a 3 ft. solid parabola for 8-12 GHz, and a 2 ft. solid parabola for 12-18 GHz. A filter bank is used to measure pulse frequency to + 30 MHz within 2000 MHz commanded at any given time. The pulse frequency system can be switched to either the DF or the omni antennas. 256 KBPS for EOB/GS on one track (4:1 or 1:1 mode),

is provided for unambiguous DF. Compressive filter for 13 MHz pre-D or Comint baseband copy.

WEIGHT:

540 lbs. (incl. 135 lb. P/L) plus 57 lb. launcher

AEROSPACE:

Helped sell concept, specify configuration, and provide

750 KHz pre-D on second track (1:1 mode). CW inhibit

careful monitoring of system development

OTHER:

Spin axis will be controlled at angle of 35° off North. Spin rate controlled to 55 rpm. Correlation of main

beam and sidelobe intercept data is planned.

DATES:

Mission Approval:

Oct. 71

P/L Contract Award:

15 Mar. 72 (signed 3 May 72)

P/L Delivery:

15 Aug. 73

Buy-off:

Jan. 74

SECRET/E

Approved for Release: 2024/08/06 C05098605

25X1

.

)EV

Approved for Release: 2024/08/06 C05098605

SECRET/E

BIF-107W-44075-72A -44-

(36) 4431 - URSALA-IV - EOB/GS SYSTEM

LAUNCH:

Scheduled for January 1975 on P-467 Titan III-D (SV-10)

OTHER DESIGNATIONS: MSN-7344, IRON-

PAYLOAD

CONTRACTOR:

Motorola, Scottsdale, Ariz. (\$3.2M)

MISSION:

Collect and locate sources of pulsed signals to

over the 2000-12000 MHz CW signals to

frequency range

DIFFERENCES

FROM 4430

URSALA:

None - built-in parallel

WEIGHT:

543 lbs. (incl. 135 lb. P/L) plus 57 lb. launcher

OTHER:

DATES:

Mission Approval:

28 Feb. 72

P/L Contract Award:

May 72

P/L Delivery:

Nov. 73

Buy-off:

Nov. 74

Approved for Release: 2024/08/06 C05098605

25X1

BIF-107W-44075-72A -45-

PROMISING NEW CONCEPT

SHARON:

Signal Handling And RecognitiON

MISSION:

Collect, locate, copy, and identify Comint and Telint

signals in the 60-450 MHz frequency range

CONFIGURATION:

Spinning interferometer with pair of 4' x 4' flat spirals for 60-200 MHz, pair of conical spirals for

200-450 MHz, multiple signal recognition criteria, 1 MHz

recorders for telemetry or communications signal

baseband copy, encrypt Comint on playback.

MAJOR PROBLEMS: Routine AM/FM interference and multitude of

recognition parameters

POSSIBLE

SOLUTION:

Use minicomputer to program recognition criteria on per signal basis and supply it with A/D converted

spectral analysis to generate PCM road map for

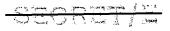
identification of signals of interest by the analyst based

on location and spectrum

AEROSPACE:

Originated and presented concept

STATUS:


Presented to NRO/NSA in May 1971

Subject for early October 1972 meeting at NSA

OTHER:

Meeting at NSA will also cover priorities, other candidate P-989 missions (i.e., another Arroyo microwave mapper), and possible add-on payloads

which remain with the P-467 vehicle

