

LMSD-446240-56 6 S. w No. ". Ø

"y

Å

DISCOVERER XIV (Agene 1056/Ther 237) SYSTEM TEST EVALUATION AND PERFORMANCE ANALYSIS REPORT (35-Day Report)

Contract AF 04(647)-558

Propared by

Systems Integration, 62-64

Technical Operations and Evaluation, 61-44

APPROVED:

4

8

8

SATELLITE SYSTEMS MANAGER

C

APPROVED:

R'O. YOU rg, ma

C

SATELLITE SCATENS ENGINEERING

This decement contains information affecting the national defense of the United States within the meaning of the Replacage Laws, This 18, U. S. C., Sec. 710 and 794. In frequentiation or the revelation of its contents in any meaner to an anotherization to any meaner to an anotherization.

CEADET

FOREWORD

Administered by the Air Force Ballistic Missile Division (AFBMD), the Discoverer Program has as its principal objectives the development of Thorboosted Agena satellites capable of functioning as carriers for scientific materials and the recovery of capsules ejected from orbiting Agenas.

As prime contractor, Lockheed Missiles and Space Division, Satellite Systems has overall responsibility for developing the program. Development of the Thor as a booster rocket for the Agena satellite has been carried out by the Douglas Aircraft Company.

This document is the final system test evaluation and performance analysis report for the launch of Discoverer XIV from Vandenberg AFB on 18 August 1960. It is prepared to meet a requirement of Contract AF 04(647)-558 in accordance with Paragraph 1.4.1 of LMED-445158-B, <u>Discoverer Program.</u>

READES

SUMMARY

Discoverer XIV (1960 Kappa), consisting of a Thor booster (237) and an Agena satellite (1056), was launched into orbit from Vandenberg AFB Complex 75-3-4 at 12:57:07.85 PDT on 18 August 1960 on the first attempt.

٩

.

Liftoff, Thor boost, Agens second-stage burning and injection into orbit were accomplished without incident. Injection conditions produced a 94.54-minute orbital period, with a 441 nautical mile apogee, a 103.5 nautical mile periges, and an eccentricity of .046.

On the initial acquisition by the Kodiak Tracking Station (KTS), attempts were made to transmit an orbital-timer increase command, but Command Tone A was not verified. However, after adjustment of the ground radar equipment, KTS was able to reset the orbital timer to the desired period on Pass 2. Later, Pass 10 difficulty was experienced in commanding the satellite from the Hawaiian Tracking Station (HTS), but again, by readjusting the Tone A deviation of the ground radar, the commands were transmitted properly.

During Passes 1 and 2, the satellite indicated attitude instability which caused excessive use of control gas, and it appeared doubtful if sufficient gas would remain for recovery operations on Pass 17. However, when reacquired on Pass 8, the satellite had stabilised, gas-consumption rate had been sharply reduced, and nominal consumption with good stability continued until recovery. The cause of the original instability is being investigated.

On Pass 15, the orbital timer was successfully reset to permit recovery in the planned area. Therefore, on Pass 17 recovery was initiated and successfully carried out. Stations were unable to receive the capsule telemstering

LMSD-446240-56

MISSILIS and SPACE DIVISION

because of telemeter circuitry failure. Several stations and recovery-force units acquired and tracked the capsule VHF beacon.

A recovery aircraft was directed to the impact area which was approximately 430 nautical miles downrange from the originally predicted area. On the third recovery pass, the capsule was hooked and successfully brought on board. The cause for the large deviation in the impact area from that predicted is now believed to be due to improper recovery orientation of the satellite. This problem is being investigated.

With the exception of the satellite instability on Passes 1 and 2 and the incorrect recovery attitude, the flight was a complete success, resulting in the first aerial space capsule recovery and the second Discoverer capsule recovery.

SECRET

LOCKHED AIRCRAFT CORPORATION

SECRET

LMSD-446240-56

CONCLUSIONS

- Discoverer XIV, carrying an AET payload, achieved approximately
 92 percent of its flight objectives, including that of recovering an instrumented capsule from an orbiting satellite.
- 2. Performance of the Thor booster was within tolerance, and the orbit achieved was near preflight nominal.
- 3. The objectives not met included the attitude stability of the satellite for orbit and recovery. However, the malfunction was such that, while the recovery impact area was 430-nautical miles downrange, the capsule was recovered in the air by a recovery-force plane. Capsule-telemetry command difficulties proved to be primarily in the ground control equipment.
- Communications and control by the Sunnyvale Satellite Test Center were satisfactory. Launch tracking, orbital tracking and control were properly carried out.

LOCKHED AIRCRAFT CORPORATION

LMSD-446240-56

CONTENTS

	Page
FOREWORD	▼.
SUMMARY	vii
CONCLUSIONS	ix
NOMENCLATURE	zvii
SECTION 1 INTRODUCTION	· 1-1
Program Objectives	1-1
Scope of This Report	1-2
Summary of Discoverer Flight Tests	1-3
TEST DESCRIPTIO	N
SECTION 2 TEST CONFIGURATION	2-1
Tracking Aids	2-1
Recoverable Capsule	2-5
Recovery Force	2-5
Tracking Complex	2-6
SECTION 3 TEST OPERATIONS	3-1
Prelaunch Operations	3-1
Launch and Ascent	3-4
Orbital Operations	3-4
Capsule Re-entry and Recovery	3-14
TEST EVALUATION	X
SECTION 4 TEST OBJECTIVES AND RESU	LTS 4_1

SECRET

LOCKHEED AIRCRAFT CORPORATION

LMSD-446240-56

CONTENTS (Continued)

SECTION 5	FLICHT PERFORMANCE	5-1
Launch a	nd Boost Phase	5-1
Trajector	-7	5-11
Orbital P	hase	5-15
SECTION 6	Telemetry and instrumentation	6-1
Satellite '	Telemetry	6-1
Capsule 1	instrumentation.	6-2
Capsule 1	Celemetry	6-2
SECTION 7	. CAPSULE PERFORMANCE	7-1
Capsule	Attitude	7-1
Retro Ph		7-3
Subnomin	al Spin-up	7-5
SECTION 8	RECOVERY OPERATIONS	8-1
Prerecov	ery Operations	8-1
Capsule 1	Fracking Operations	8-1
Recovery	Force Operations	8-7
Control,	Communications, and Weather	8- 7
Capsule (Condition	8-9
Operation	as Summary	8-9
SECTION 9	GROUND SYSTEMS	9-1
Satellite	Test Center (STC)	9-1
Palo Alto	Computer Center (PACC)	9-1
System O	perations Analysis (SOA)	9-5
Human F	actors	⁻ 9-7
Tracking	Stations	9-7
Ground S	upport Equipment	9-14
SECTION 10	OPERATIONS SUPPORT	10-1

rii

SECRET

DISTRIBUTION LIST

LOCKHEED AIRCRAFT CORPORATION

MISSILIS and SPACE DIVISION

LMSD-446240-56

ILLUSTRATIONS

Tigure		Page
Frontispiece	Liftoff of Discoverer XIV (Agena 1056/Thor 237) from Pad 4, VAFB	
	Recovery Capsule and Parachute are Hooked by C-119J Boom on Third Attempt	iv
2-1	Agens Inboard Profile	2-2
2-2	Agena 1056/Thor 237 Configuration	2-3
3-1	Recovery-Force Deployment at Estimated Time of Parachute Deployment	3-16
3-2	Recovery-Force Beacon Bearings from 2253 GMT to Recovery	3-19
5-1	Ascent-Attitude Control Performance	5-7
5-2	Inertial Velocity in Relation to Time	5-12
5-3	Altitude in Relation to Time	5-13
5-4	Crossrange Related to Downrange	5-14
5-5	Agena Orbital Tracks Following Launch	5-16
5-6	Agens Orbital Tracks Prior to Recovery	5-17
5-7	Hydraulic-Motor Battery System	5-18
5-8	Orbital-Attitude Control Performance	5-19
5-9	Torquing Circuitry	5-21
5-10	Amplifier Gain Characteristics	5-22
6-1	Agens 1055, 1056, and 1057 Recovery Telemetry Coverage	6-4
7-1	Pitchdown Performance	7-2
7-2	Effects of Retrorocket Firing Angle on the Impact Point	7-4
7-3	KTS VHF-Beacon and Agena-Telemetry Signal- Strength Records	7-6

LOCKHEED AIRCRAFT CORPORATION

SECRET

LMSD-446240-56

ILLUSTRATIONS (Continued)

Figure		Page
7-4 ·	Agena and Capsule Trajectorised During Re-entry	7-8
8-1	Recovery-Force VHF-Beacon Acquisition History	8-3
8-2	Capsule-Beacon Coverage, Recovery Pass	8-5
9-1	Errors in Predicted Time of Station Crossings	9-4
9-2	Tracking-Station Positional-Data Quality	9-9
9-3	Launch Radar and Telemetry Coverage	9-10
-		

LOCICHEED AIRCRAFT CORPORATION

LMED-446240-56

TABLES

		Page
6-1	Agens 1056 Weight Statement	2-4
2-2	Discoverer XIV Centers-of-Gravity and Moments- of-Inertia	
3-1	Agens 1056 Elstory	· 4- 9
3-2	Countdown Chronology	3-1
3-3	Launch Sequence of Events	3-6
3-4	Orbital Contact Summary	3-8
3-5	Impact Area Predictions	3-15
3-6	Capsule Acquisition by Force Components	3-17
5-1	Summary of Critical Data	5-2
5-2	Temperature Flight Data	5-5
5-3	Power Supply Velinges	5-6
5-4	Propulsion Performance	5-9
5-5	Commands Summary	5-24
5-6	Orbital Timer Accuracy	5-28
5-7	Orbital Timer Events	5-29
7-1	Retro Events Determined by VHF Beacon Signal Strength	7-6
9-1	Communication Problems	0_3

LOCICHED ANCIAN CORPORATION

MINING and SPACE DIVISION

LMSD-446240-56

NOMENCLATURE

ADS	Attitude-Damping System
AGC	Automatic Gain Control
Countdown	Step-by-step process leading to a missile launching
Countdown	Reduction of radar-beacon response to interro- gations due to unsynchronized multiple-active tracking by two or more ground radars, or by improper spacing between the command and interrogation pulses
CWAT	Continuous-Wave Acquisition Transmitter
DAC	Douglas Aircraft Company
DF	Direction Finding
ETA	Estimated Time of Acquisition
ETPD ·	Estimated Time of Parachute Deployment
FM/FM	Frequency-Modulated subcarriers, Frequency- Modulating carrier
FPS -16	A C-band skin-track radar
GE .	General Electric Company
GFE	Government-Furnished Equipment
HCC	Hawaiian Control Center
HTS	Hawaii Tracking Station
IRP .	Inertial Reference Package
JHU/APL	Johns Hopkins University/Applied Physics Leboratory
KIAS	Knots, Indicated Airspeed
KTS .	Kodiak Tracking Station
MAB .	Missile Assembly Building, VAFB
MPR	Main Power Relay
MTS	Point Mugu Tracking Station
NBTS	New Boston Tracking Station
PACC	Palo Alto Computer Center

xvii

SECRET

LOCKHEED AIRCRAFT CORPORATION

LM8D-446240-56

MISSIES and SPACE DIVISION

.

NOMENCLATURE (Continued)

PRF Pulse-Recurrence Frequency PMR Pacific Missile Range RF Radio Frequency **5AO** Smithsonian Astronomical Observatory SAPUT Solar Auxiliary Power Unit Telemeter SCTB _ Santa Crus Test Base SOA System Operation Analysis STC Satellite Test Center, Sunnyvale, California System Time Time in seconds measured from 2400 Greenwich Mean Time (GMT): recycles every 24 hours A high-gain, narrow-beam, VHF, automatic-tracking, 60-foot-diameter antenna **TLM-18** VAFB Vandenberg Air Force Base VCC Vandenberg Control Center VERLORT Very Long-Range Tracking Radar VSWR Voltage Standing-Wave Ratio VTS **Vandenberg Tracking Station**

LOCKHEED AIRCRAFT CORPORATION

SECRET

SECTION 1 INTRODUCTION

:

.

LMSD-446240-56

MISSILES and SPACE DIVISION

SECTION 1 INTRODUCTION

In Discoverer Program operations to date, 14 Agena satellites have been launched from Vandenberg AFB, 9 of which have been successfully injected into orbit. Present plans call for the launching of 16 additional satellites before the program is concluded.

PROGRAM OBJECTIVES

The principal program objectives are the development of Thor-boosted Agena satellites, capable of functioning as carriers for scientific material and the recovery of capsules ejected from the satellites. Additional objectives are the perfecting of equipment, techniques, and procedures for launching Thor-boosted Agena satellites; attaining orbit; acquiring, tracking, and commanding the Agena during launch, ascent, and orbit; recording, transmitting, receiving, and processing satellite functional and environmental data, as well as geophysical data. It is also expected that system operational techniques and procedures, including tracking-station, control-center, and launch-base training, will be refined as the program progresses. Specialized tests, including aeromedical research, will be executed during the series. A propulsion-system capability for single restart and extended-duration operation will also be tested.

Finally, an important long-range objective of the Discoverer Program is the refinement of equipment and procedures which will be used in the more advanced MIDAS and Samos programs, as well as in future deep-space probes.

SECRET

LOCKHEED AIRCRAFT CORPORATION

LMSD-446240-56

SCOPE OF THIS REPORT

Under Test Evaluation, this report covers the Test Objectives and Results (Section 4). Test Description is concerned with all elements of the Test Configuration (Section 2) and a Chronological Description of the Test (Section 3). Additional sections under Test Evaluation provide the detailed performance of the flight, capsule, recovery operations, instrumentation, ground systems, and operations support.

LOCICHED AIRCRAFT CORPORATION

MISSING and SPACE DIVISION

LMSD-446240-56

. 1

SUMMARY OF DISCOVERER FLIGHT TESTS

	LANNER COMPLEX, THE, AND DATE		947.040	R0006.75
1007400	Complexed Animated on 21 Jun 20	1	Response in sector	Nationalise daring sampless around Mary solution discussions fields the Lain, and Joseph and some fields to the observation of a solution of the Solution between and the solution of the solution of of the solution of the solu
Bizzani 1982/148 (1987 Basi)	Camping 4 Todaks per To Fak SP		Harassendin, syntak Ing of committeine optigant	And the sector of a sector is by Makes the interaction of the sec- sector and a lower for CRAT and and the sector of the sector of the sector of the sector of the sector of the sector of the first of the first of the sector of the sector of the first of the sector of the sector of the first of the sector of the sector of the sector of the first of the sector of the sector of the sector of the sector of the se
Diseases I 100/120 (100 Gama)	Campbas A 1916a0 PBT 18 Ayr 80		Namida sasarah yap oris gantatag iar anisasini ato	Chief addressel. Region detained by second forming addresses, but believed do to miny anditantical. Coperin dynamic har our conserved. W day Mr. Stor conserved.
Vincenter II 1686/134	Complex 3 Helidas yer 3 Jan 39	•	Breached meansch cap- arbs castidading faur Bro give	Number order leave to 5 tel about a failed at the failed start a failed at the failed at the start and the start at the start at the start at the start at the start Blanks at the start at the start Blanks at the start at the s
	Canadian J WCARE (RFT SE Jage SP	•	American All Control of the second se	Properties angles langest extends, regulating in insufficient without for othe designess, fish second part for extends of the vehicle and part descents for vehicle angles.
Disevence V 1980/192 (1980 Spatias)	Complex 4 1986-09 1977 18 Aug 89	•	Research Aft name and	Normal das in propolitat achanitas. Dist achievel, Capacito reported int art recorded. Record y capacitos interna achiever, international das in activas achiever, international das in activas achiever, international any, di-day Minister capacity.
Placewar VI 1989/200 (1989 Zata)	Complex 3 Stable 4 (FDT TO Aug. 50		Research AFT	Remot das to propilitat admitta Odit editoria, Carato aspented Int un variant, Remote aspenter Internet and completed, & day Return received.
Planyans 1977/205 (1989 Kaya)	Complex 4 1986:Cl POT 7 Nov 39		Barnarak Aft manual ayanin	
91444447 4781 1989/202 (200 Locida)	Complex 3 TEMAS PET 30 New 80	1	Research AFT	Inner der synophiet erkanten isterigen erkensten intereter understen bei bereiter intereter visterigen erkensten intereter die sonner intereter die s

LOCIGHEED AIRCRAFT CORPORATION

-SECRET

1-4

VENCLIN AGENA/THOS	LAUNCH COMPLEX, THE, AND DATE		PAYLOAD Description	RUNATS
Disastrativ (X YNE2/216	Complex 4 1855-65 PET 4 Peb 40	4	Rearrankie AET menanth aspanie	Ten per estenten et blad, under interesten et blad, under interesten en blad, dans under besterne en blad. Anne under her aller anderes
Deserver X 1994/229	Complex 5 1218; 14 PST 19 Feb 60	1	Resourchie AET maarth aquate	A likel, The baster pick coefficient bages to drougs, cooring sele-auges gehelding fees step to step. Descover destated consolvely fees programmed Right path cools and destruct signed was transmitted of T + 36.26 seconds.
Disease are 22 1989/284 (1989 Duite)	Complex: 3 1230637 PET 16 Apr 60	1	Resourchie AET sussessie aspesie	Non point of the designal. Again sea- den in actual data for against separation completion. Note and desits redail they confident as we desit sease app- relation of the desite sease app- relation. Again definition of the sease which is the vertical of the addition which vertically. Consider a sea- relation which vertically. Consider a seasy addition which vertically. Consider a seasy addition which we which a seasy addition which we which a seasy addition of the vertical probability subsets y light out beyond probability subsets y light out beyond probability
Dissurgery XII NUCLINE XII	Cambox 4 1800-44 PDT 24 Jun 60	1	Resounded days offic apado	Lifed out court to be a life to a li
Diseases 700 1907/201 (1900 These)	Complex 8 Lighter POT TO Ang 60	1	Recoverdalo disquantia aspenio	Liferi on one set and a set a set and a set
Dissources XIV NG6/207 (1989 Kappe)	Complex 4 EXERCE POT B Any 68	1	Recoundio AET capado	Libel and come totateries and injection when your contracts. Ofer dans diff- when your contracts. Ofer dans diff- ality with Jaco A, consult was ton- alited property. After consulty use of quint get to an error to billed institling, to appear to an error to billed institling, to appear to an error to billed institling, to appear to appear of billed and the momenty of the A. Dowles descent 400 m and of the particular on, to fine out of momenty of a specific to a disting sold momenty of a specific to a scientific sold.

LOCICHEED AIRCRAFT CORPORATION

-SECRET-

1-5

TEST DESCRIPTION

SECTION 2 TEST CONFIGURATION SECTION 3 TEST OPERATIONS

- 7.81

at beretists is utilise beekins

h

LM8D-446240-56

SECTION 2 TEST CONFIGURATION

As with previous flight tests in the series, the Discoverer XIV system configuration consisted of a second-stage LMSD orbital Agena satellite (Model 2205, Serial Number 1056) (Fig. 2-1) mated by an adapter section to a DAC Thor (Serial Number 237) (Fig. 2-2), with the necessary first- and second-stages support equipment, a ground station launch complex, command and communication system, and a capsule-recovery force.

The Agena 1056 weight statement and Discoverer XIV centers-of-gravity and moments-of-inertia appear in Tables 2-1 and 2-2.

TRACKING AIDS

Among the special features of the satellite were a Johns Hopkins University/ Applied Physics Laboratory (JHU/APL) tracking beacon, transmitting on 162 and 216 mc (for determining orbital parameters by the Doppler technique) and four 12-volt, 100-candlepower light bulbs (for high-accuracy optical tracking), both operated off the hydraulic battery. The beacon was programmed to operate continuously until battery exhaustion. The lamps were controlled by the orbital timer to turn on while the satellite was within reception range of the Smithsonian Tracking Stations, which were equipped with Baker-Nunn cameras.

LOCKHEED AIRCRAFT CORPORATION

2-1

	Pred	lated	Actual	
Welght	(1b)		Subtotal (1)	Sotal
Agene Weight Buyty		8015	()	9011
Oxidiaer Fuel	4762		4762	
Gross Weight - Thor Payload. Less:		8643	1000	8645
Adapter and Attachments Retrorockets Destruct System	149 16 7		1)19 16	
Separation Weight Less:		8471		8473
Norison-Scenner Fairing Control Gas Expended During Coast Ullage Rockets and Attachments	2 38		2	
Ingine Ignition Weight		8428	90	8427
Starting Charge Nozzle Closure Oxidizer Preflow Impulse Oxidizer	1 3 5		1 3 5	
Ingulse Fuel Enrust Atteinment Weight (005 P)	1		2 1	
Less:		8416		8415
Inguise Unidiser Inguise Fuel Control Gas Expended During Boost	4681 1812 3		4700 1817	
Intidown Weight Less:		1920	ž	1896
Vented Hesidual Propellants Vented Helium	127 5		105	1.1
eight Hapty on Orbit (With Control Gas)	•	1788		1786
eight Hapty on Orbit (Gas Broandat)	35		37	
(-1753	1	1749

Table 2-1 AGENA 1056 WEIGHT STATEMENT

2-4

SECRET

LOCKHEED AIRCRAFT CORPORATION

ILES and SPACE DIVISION

Table 2-2

DISCOVERER XIV CENTERS-OF-GRAVITY AND MOMENTS-OF-INERTIA

CONDITION	CONTINUES OF MARE (IN)			MONSTER OF INSPECIA (SUDG PT2)			
	Z	I	T	I,	Ţ	I,	
Booster Burnout	645.1	+0.08	+0.14	381,100	381,100	2,076	
Thor Payload	362.3	-0.04	+0.07	2,411	2,422	152	
Separation	361.1	-0.06	+0.08	2,251	2,266	123	
Ingine Ignition	360.6	-0.04	+0.08	2,162	2,177	123	
Barnout	353.9	-0.12	+0.38	1,749	1,764	122	
On Orbit, No Gases	349.1	+0.13	+0.43	1,613	1,625	າສ	

RECOVERABLE CAPBULE

The Agena's recoverable capsule was similar to those on previous Discoverer flights, except that the spinup and despin rockets were replaced with the coldgas-jet system (Freen-mitrogen) as in the previous Discoverer XIII (Agena 1057). The recoverable payload was an AET test package.

RECOVERY TORCE

The capsule-recovery force consisted of nine C-119J sircraft (for acquisition and aerial capsule pickup), four RC-121D sircraft (for capsule location), one C-130A sircraft (for acquisition and serial capsule pickup), five JC-54 sircraft (for recording capsule telemetry signals), one WV-2 sircraft (for frequency-interference control and capsule location), and two victory ships, <u>USS Haiti Victory</u> and <u>USS Dalton Victory</u> (for surface recovery).

2-5

SECRET

LOCKHEED AIRCRAFT CORPORATION

The nominal capsule impact point was 28-degrees north latitude and 158degrees 48.7 minutes west longitude.

TRACKING COMPLEX

The tracking station complex was similar to that of the previous Discoverer flight, with the exception of the <u>USS Pvt. Joe E. Mann</u> which was replaced by a WV-2 aircraft (for telemetry reception). The Pacific Missile Range (PMR) facility at Barking Sands, Kausi, recorded capsule signals and transmitted bearing information to the Hawaiian Tracking Station, (HTS) Oahn, where, together with the HTS and South Point bearing information, the approximate capsule trajectory was determined. The temporary telemetry-receiving station on Christmas Island was also utilized to extend the capsule-detecting and telemetry-receiving range.

2-6

LOCKHED AIRCRAFT CORPORATION

SECRET

LMBD-446240-56

SECTION 3 TEST OPERATIONS

PRELAUNCH OPERATIONS

LOCICHEED ANCEAFT CONFORATION

A summary of Agena 1056 progress from the time of its manufacture to the time of launch is presented in Table 3-1.

Table 3-1 AGENA 1056 HISTORY

Date	Ivent
5-26-59	Completed (manufacturing) final assembly 12650, Sunnyvale
5-25-39	Sent to modification and checkout at IMED, Sampyale
8-6-99	Sent to and received at 8028
9-16-99	Completed successful "hot" firing
9- 24- 99	Returned to IMED, Samnyvale, for modifications and thechout
11 -24- 59	Sent to and received at VATS
4-4-60	Completed MB systems checkout run
4-7-60	Sent to Pad 4
4-11-60	Completed countdown and Flight Systems Check
42660	Beturned to MAB following planning-scheduling changes
7-21-60	Completed final MAB systems checkout
7-23-60	Transferred to Launch coupler
7-30-60	Completed final systems check at pad
8-16-60	Completed mating to first-stage booster
8-18-60	Immobed vehicle

SECRET

LMSD-446240-56

The one countdown required to launch Discoverer XIV began at 0430 PDT on 18 August 1960 and proceeded smoothly to a successful liftoff 8 hours and 27 minutes later. Two technical holds were necessary. These holds totaled 72 minutes and were caused by ground support equipment (GSE) delays detailed in the Countdown Chronology, Table 3-2.

The Sunnyvale Satellite Test Center (STC) and the Palo Alto Computer Center (PACC) were manned and ready for countdown and launch by 0530 PDT. Checkout of the tracking system and data-transmission link was initiated on schedule. Practice system runs were received and evaluated, and all stations were ready for launch operations at 0845 PDT.

Table 3-2 COUNTDOWN CHRONOLOGY

وي بي المراجد الم		time #	betulet	Actual Countdown Tim		
Tests Tests		Start Time	Duration	86 75	ert Ne	Deretion
30.	• • • •	(min)	(min)	(PST)	(min)	(min)
1.	Precountdown Operations and Countdown Initiation	T - 435	10	0430	T - 435	2)4
2.	GFE Mating	T - 425	45	0444	T - 421	32
3.	Shelter Removal. Vehicle Breation	T - 395	30	.0507	T - 398	%
4.	RF Checkout	T'- 380	50	0601	T - 334	94
5.	Lanyard Connection and . Puel-Truck Activation	T - 345	30	0601	T - 344	40
6.	Destruct Test	T - 315	30	0734	T - 251	23
7.	Orbital Stage Arm	T - 285	40	0757	T - 228	36
8.	Connect First-Stage Destruct System	T - 285	40	0757	T - 228	38 '

3-2

SECRET

LOCKHEED AIRCRAFT CORPORATION

Table	3-2 ((Continued)

		Time Scheduled		Actual Countdown Time		
Zask X0.	Teak	Start Luc (min)	Duration (min)	e T (rer)	art m (min)	Duration (min)
9.	Propellant-Line Fill	T - 245	60	0835	T - 190	75
	Hold No. 1 Imposed (a)			0910	T - 155	40
10.	Countdown Ivaluation	T - 185	30	0935	T - 115	15
11.	Electronics Warmap	T - 115	90	0950	T - 155	32
12.	GTE Checkout	T - 150	40	0972	T - 153	28
13.	Bange RF Checks	T - 145	30	0955	T - 150	5
1 k .	Propellant Tanking	T - 110	30	1022	T - 123	76
15.	Secure Propellant Trucks	T - 8 0	25	1138	<u> 코 - 47</u>	22
16.	Guidance and Flight- Control Checkout	エ - ガ	25	1200	T - 25	33
17.	Pressurisation	T - 55	25	1200	T - 25	.44
	Hold No. 2 Imposed (b)			1210	T - 15	32
18.	Countdown Svaluation	T - 30	17a 50e	1235	T 15	7
19.	Terminal Countdown	T - 12m 10s	19m 10s	1945	T - 12	12
	Idftoff at	T - 0		1257:07:85		

SUBMARY OF HOLDS

- (a) Hold No. 1 was called at T 155 for work to catch up with the count after earlier delays. Causes for chese delays included:
 - 1. A hydraulic power unit malfunction during Task 3 (DAC GEE)
 - 2. Task 4 (RF Checkout) delay to swoid RF interference with a systems run at the MAB (IMED)
 - 3. Short fuel-fill umbilical lanyard replacement during Task 5 (IMED GEE)
 - 4. Inservent operation of the water-deluge system at the pad during Task 9 (DAC GEN)
 - 5. Inspection of an apparent bardline damage in the unbilical mast.
- (b) Hold No. 2 was called at T 15 to allow work to catch up again with the count, after a delay in Task 14, propellant tanking (IMED GSE).

LOCKHEED AIRCRAFT CORPORATION

SECRET

3-3

LMSD-446240-56

LAUNCH AND ASCENT

Discoverer XIV was successfully launched into a near-nominal orbit from Pad 4, VAFB, at 1257:08 PDT on the first launch attempt. Liftoff was normal and only minor pad damage resulted. The vehicle was launched vertically and then was properly rolled to a departure azimuth of 172. 4 degrees (172 degrees predicted). All programmed events occurred in the proper sequence. The first-stage boost trajectory was nominal. Thor main-engine operation was normal with an operating time of 164.89 seconds (approximately 0.35 second longer than predicted). Separation was initiated properly and completed within 0.74 second of the predicted time.

SECRET-

Data received and utilised by the Reeves computer at the Point Mugu Tracking Station (MTS) during ascent and coast resulted in the transmission of 24.29 seconds of Command 5 (which extended the D-timer hold to 26.70 seconds), and 13.2 seconds of Command 6 (controls velocity-integrator setting). Both commands were received by the vehicle and properly executed.

Agena engine start (90 percent thrust) occurred at T + 277.8 seconds and nominal thrust was obtained. Duration of engine operation was 115.78 seconds, compared to a predicted time of 112.7 seconds. Engine shutdown was by integrator command. Telemetry coverage was maintained until T + 690 seconds by the downrange telemetry ship.

Table 3-3 lists the predicted launch sequence of events and the actual times when these events occurred.

ORBITAL OPERATIONS

Checkout of the tracking systems complex was conducted on the morning prior to launch, usin, nominal acquisition messages that had been sent to all stations. On the basis of launch tracking data received by the PACC from MTS and VTS, initial orbital elements were calculated and a new

3-4

SECRET

LOCKHEED AIRCRAFT CORPORATION

Byent	Predicted Time (sec)	Actual Pine (sec)					
Liftoff (a)	0	0					
Main-engine Cutoff							
Tennien_engine (whoff		69111).					
Church Tederald 7.4 Elteren		im. "					
Replosive Bolts FIRE							
Promitice Off							
Netrorockets 7122							
Command -45 deg/min Pitch Bate							
Command -2 deg/min Pitch Rate		6.4111.					
Stort D-timer Hold		6.4111.					
(Duking Hold Departion)							
Command 5 CM		1.411m					
		6.41111 411111					
		imi. Milli					
(Duration Command 5)							
Counterad. 6 Oill		1.411i					
Command. 6 0227		6.4111).					
(Duration Command 6)		KM//K/////					
Ullage Rockets FIRE		6.4111i					
Pressivate Rydraulics		1.4111i					
Helium Hypens Walve Open							
Branch Addedument (OOK B)		[]////////////////////////////////////					
	- Min						
HORING BUILDOOM (109 %)		6.411n.					
(Duration Regine Operation)							
Command -40 deg/min Your Bate							
Hydreulies Shutdown							
Vant Valves FIRE							
		\					

Table 3-3 LAUNCH SEQUENCE OF EVENTS

(a) 1257:07.85 EDE; system time: 71827.85 seconds; 1957:07.85 GME

(b) Based on actual D-timer hold of 26.7 seconds

3-5

LOCKHEED AIRCRAFT CORPORATION

SECRET
Table 3-3 (Continued)

Ivent	Predicted Time (sec)	Actual Piner
VIS Telemetry Jade MIS Telemetry Jade		
Remove -40 deg/min Yaw Bate Downrange Ship Talemetry Fade		

(b) Based on actual D-timer hold of 26.7 seconds

LOCKHEED AIRCRAFT CORPORATION

3-6

LOCKHEED AIRCRAFT CORPORATION

LOCICHED AIRCRAFT CORPORATION

CAPSULE RE-ENTRY AND RECOVERY

Prerecovery operation briefings proceeded as planned with both the surfaceelement briefing and the air-element briefing accomplished on schedule. The operation was conducted with the same force composition as Discoverer XIII with the exception of the USS <u>Pvt Joe E. Mann</u> telemetry ship which completed its commitment to the program prior to the Discoverer XIV operation.

Revisions to the impact area were issued as refined ephemeris data and became available from the launch operation and succeeding orbital passes. The revisions as issued are listed in Table 3-5.

LOCKHEED AIRCRAFT CORFORATION

3-14 SECRET

LMSD-446240-56

Table 3-5

Prediction	Time of Heceipt (CMCF)	(Get)	Istitude (deg N)	Iongitude (deg W)	Pass
1 (Moninal)	1915, 16 August	2151:15.3	24 00.5'	158*49.8'	17
2	2340, 18 August	2252:17.2	24.00.01	163*33.6'	17
3	0905, 19 August	2251:51.0	24.00.01	163°26.8'	17
4	1020, 19 August	2251:50.0	24 00.0'	163*26.4'	17
5	1247, 19 August	2251:42.1	24 00.01	163*24.0'	17
6	2008, 19 August	2251:32.5	24:00.71	163 °22. 0'	17
7	2128, 19 August	2251:29.0	24 15.7'	163*24.5'	17

IMPACT-AREA PREDICTIONS

* Estimated time of Paracharte Deployment.

The recovery operation on 19 August began with a fully operational force. All recovery-force aircraft were airborns by 2046 GMT and on station by 2137 GMT. The USS <u>Haiti Victory</u> and USS <u>Dalton Victory</u> were on station by 2047 GMT. At 1850 GMT, the RC-121 Number 1 and Number 2 aircraft were ordered to assume stations 100 nautical miles south of their planned stations. After KTS was able to command the satellite, the RC-121's were ordered at 1947 GMT to return to their normal stations. At 2045 GMT, RC-121 Number 3 reported that its Number 4 engine was out and the aircraft was aborting its mission. At this time, RC-121 Number 4 was advised to move northward 50 nautical miles to cover the southern recovery area. This order was revised immediately to proceed per plan and not to change position. Upon receipt of prediction 7, all force components were moved 16 nautical miles north. The force deployment at estimated time of parachute deployment (ETPD) is shown in Figure 3-1.

The first capsule VHF-beacon-signal acquisition by a recovery-force component was by the USS <u>Haiti Victory</u> at 2246:50 GMT (Table 3-6). At 2248 GMT, C-119J Number 8 acquired a Class C bearing. By 2250:30 GMT, eight recovery aircraft, the <u>Haiti Victory</u>, the WV-2, and JC-54 Number 1 had VHF beacon acquisition with either an indeterminate bearing or a northerly

SECRET

3-15

MISSILES and SPACE DIVISION

LOCKHEED AIRCRAFT CORPORATION

3-16

SECRET

LOCKHEED AIRCRAFT CONFORATION

LMSD-446240-56

Table 3-6

CAPSULE ACQUISITION BY FORCE COMPONENTS

	Am	The log	Sim Jun	Juntag Ang	Intering Indo	200g	
Units				(ang tuto)			
0-119 36. 1				JN			G
0-119 30, 2		8650:3 0		-	-	231.1	0
0-119 30. 3		3816:3 0	8851.	-	-	234.0	C
0-139	-	ash8	3851 .	-		29.3	-
	68	113)	#30e	386*	279*	25.5	3 to A
0-119	•	2016:3 0	ME90:30	327.0	· •	254-2	•
		30 ,96		17Å ⁰	-	235.0	A to 3
•	a		\$307		3 67 0	25.0	3 to 0
0-119 30. 6		2010:05		•	-	25.0	•
		3875:00	8306	луг <mark>о</mark>	165°	235.0	
9-119 30. 7	. •	315 4130	#3#3	286"	276"		•
0-119 30. 8		38 18		•	-	856	a :
j		11151A3	2585	135	165	256.5	
0-119 30, 9	æ	M93 105	(visual)		(visul)	28 te 25.5	•
6-119 36-119	-	anto .	8651	3160		235	3
{	•	2305	2307	171 ⁰		835	
30-54 30.1	a	aity i	2055	•		257.8	0 🏎 A
W-A	œ	anh6		-	-	254 to 256	
	•	2054	2306	171.0	-	13	
Daltan Tistan	a	A153+15	Ofeanga	910" to 00	CLO ^P	23.5 10	Cool.
		2512.49	8587	a15 ⁰		234.5	Tuttue
						10	
				_	_		ing
Badad Tildaary		1016:5 0	M90:15	390°	305°		
10-161		11()	\$54° and 357 stles from even contar				last
		8305	Eld ⁰ and By miles, from erro, conter E7,000 foot				
		8308	7400-2004	7406-Coot altitude			

3-17 SECRET

LOCKHEED AIRCRAFT CORPORATION

bearing. By 2253 GMT, all of these signals were lost with the latest fade reported by JC-54 Number 1. At 2253:05 GMT, C-119 Number 9 acquired the VHF beacon on a bearing of 261 degrees. By 2259 GMT, six recovery aircraft, the WV-2, and the USS <u>Dalton Victory</u> acquired the VHF beacon in the general direction of the final recovery area (Fig. 3-2). Later, the C-130A aircraft also reported a short acquisition in this direction. At 2255 GMT, RC-121 Number 4 sighted chaff on its APS-20 radar at 204 degrees and 127 nautical miles. Subsequently, this aircraft sighted the chaff and possibly the parachute on its APS-45 radar.

At 2304 GMT, C-119 Number 9 reported visual sighting of the descending parachute capsule at a 16,000-foot altitude and at a distance of 5 to 6 nautical miles. Recovery was made at 2309 GMT on the third pass at an 8500-foot altitude. The recovery was accomplished at an indicated airspeed of 110 knots. The winch main-brake setting was 3.2 (static-winch brake setting of approximately 600 pounds) with a delay of 2 (5 drum revolutions before brake application) resulting in a line payout of 350 feet. One hundred, eighty-five feet of the 100-pound cord were carried in the energy-absorption trough. Contact with the parachute was made with the right pole and right bottom hook. Aerial recovery was normal and the recovered capsule was reeled aboard the aircraft at 2323 GMT.

The recovered capsule was not dented upon recovery and transfer into the recovering aircraft. Insulation on the cannon-plug wiring was reported to be burned off. The top of the capsule was sooted, and the two strobe lights appeared as if they had been melted or heated to near liquid form. The capsule was still warm to the touch when reeled into the aircraft. The top wires, antennas, and strobe lights were disconnected upon recovery. The parachute appeared to be undamaged during its descent and only slight oscillations were noticeable. It ripped on recovery and was reported to be alightly burned on top.

> 3-18 SECRET

LOCKHEED AIRCRAFT CORPORATION

MEMBLES and SPACE DIVISION

3-19

LOCKHEED AIRCRAFT CORPORATION

SECRET

test evaluation

BECTION 4	TEST OBJECTIVES AND RESULTS
SECTION 5	FLIGHT PERFORMANCE
SECTION 6	TELEMETRY AND INSTRUMENTATION
SECTION 7	CAPSULE PERFORMANCE
SECTION 8	RECOVERY OPERATIONS
SECTION 9	GROUND SYSTEMS
SECTION 10	OPERATIONS SUPPORT

.,

SECTION 4 TEST OBJECTIVES AND RESULTS

1

LMSD-446240-56

SECTION 4

TEST OBJECTIVES AND RESULTS

			A	Achievement		
			Yes	Partial	No	
I.	PR	IMARY OBJECTIVES				
	a.	Place a Discoverer satellite with a recover- able capsule in orbit.	x			
	Ъ.	Secure primary telemetered data on the test material and equipment for the length of time the recoverable capsule is in orbit (nominally 27 hours).	X .			
	C.	Tject the capsule from orbit and recover for direct examination of the test material for data and analysis.	x			
		In order to achieve the basic objectives, it was necessary that the following specific objectives be attained:				
		1. The ground support equipment must provide adequate support and checkout required for the launch of the Dis- coverer satellite and Thor booster.	X			
		 The Thor booster must carry the Agena satellite to the planned separation alti- tude, achieve the planned attitude at separation, and provide the required velocity at separation. 	X			
		3. The Agena airframe and adapter must demonstrate the ability to withstand control system perturbation and flight environment.	x			
		4. The Agena propulsion system must pro- vide the additional total impulse re- quired to attain orbital velocity follow- ing booster separation.	X			
		5. The Agena auxiliary power unit must demonstrate acceptable performance of components and supply power require- ments at least through the recovery orbit pass.				

LOCIDIEED AIRCRAFT CORFORATION

SECRET

4-1

SECRET

LMSD-446240-56

	•	A	hievenent	
	•	Yes	Partial	No
6.	The Agena guidance and control system must demonstrate the ability to:	x		
	 (a) Derive the time-to-initiate orbital boost and the velocity-to-be-gained during orbital boost, using auto- matic computation equipment. 	x		
	(b) Initiate and terminate orbital boost at the proper time.			
	(c) Maintain proper satellite orienta- tion during coast, orbital boost, and the orbiting phase until ejec- tion of the recoverable capsule.		X	
7.	The Discoverer satellite airborne and ground telemetry, tracking, and command system must demonstrate the ability to:			
	(a) Satisfactorily monitor all pri- mary functions (Thor and Agena) and produce adequate ground telemetry records of these functions.	X		
ì	(b) Properly transmit, receive, act upon, and verify all required ground-space commands.		- X	-
	(c) Determine an ophemeris of orbit sufficiently accurate to assure acquisition on each successive intercept and to allow the satel- lite timer to be adjusted with sufficient accuracy to program the required satellite functions.	X		
8.	The Agena satellite recovery system must demonstrate:			
	(a) The ability of the recoverable capsule components to obtain and transmit data.		x	
	(b) Compatibility of the recover- able capsule with the Discoverer satellite in its ascent, orbit, and during the ejection phase.	X		

LOCKHEED AIRCRAFT CORPORATION

1

SECRET-

•	***	ECRET	LMSD-44	6240-5
		r-	Achievement	·]
	• •	Te	Partial	No
	(c) Proper capsul re-entry to fac the related air system.	e functioning during X cilitate recovery by borne and surface		
•	(d) Compatibility the related sur- recovery syste- techniques.	and suitability of X rface and airborne an components and		
П.	SECONDARY OBJECTIVES			
	 Test and evaluate Agen and their effective func- ships. 	a satellite systems X tional interrelation-		
	b. Test and evaluate temp ficient number of locati satellite so that the hes established in theoretic verified and the temper ment for later flights c	eratures at a suf- ons on the Agena t-flow patterns al design can be satures suviron- an be established.		
	c. Test and evaluate the in munications network.	sterstation com X		·
	d. Demonstrate the capabil personnel to perform a communications, orbits cedures necessary to the test objectives.	lity of the system X li checkout, launch, al and recovery pro- he attainment of		
Ш.	TERTIARY OBJECTIVES			
	a. Evaluate overall system	n performance for X		

LOCKHEED AIRCRAFT CORPORATION

4-3 SECRET

SECTION 5 FLEIHT PERFORMANCE

LMSD-446240-56

SECTION 5 FLIGHT PERFORMANCE

LAUNCH AND BOOST PHASE

Launch occurred normally with Thor Booster 237 performing adequately and meeting all test objectives (Summary of Critical Data, Table 5-1). Liftoff weight was 117,034 pounds. The launching pad suffered only minor damage.

Thor propulsion was normal with a liftoff thrust of 151,000 pounds. Roll to the programmed 172-degree launch azimuth was accomplished successfully (actual value 172, 4 degrees). Main-engine cutoff occurred at 164.89 seconds with vernier-engine operation of 9.59 seconds following. Main-engine cutoff was due to oxidiser exhaustion with a propellant utilisation of 99.35 percent. Some pitch-rate oscillations were observed (143 to 160 seconds) but were only about one-tenth amplitude of the previous flight (Discoverer XIII).

Structural loads and dynamic environment on the Agens were normal and less than design values. During separation, an unexplained 5-degree yaw angle was observed. The expected value is 2 degrees and the cause for the discrepancy is being investigated. Temperature environment was also within expected values (see Table 5-2). Power consumption was normal with all units operating properly (see Table 5-3). Flight data on the hydraulic battery is not available due to a failure of the monitor, but proper operation was evidenced by the hydraulic motor operation.

Guidance performance was normal from launch through yaw-around (Fig. 5-1). During coast, the gyros indicated a correct pitchover rate of 45 deg/min for 29 seconds. The horizon-scanner operation was also correct during the launch and boost phase. All transients of separation and Agena engine ignition were correctly damped, including the above-mentioned 5-degree of 5'

LOCKHED AIRCRAFT CORPORATION

SECRET

Event	Predicted	Actual
Liftoff Weight (1b)	117,851	117,038
Thor Payload Weight (1b)	8,643	8,641
Agena Dry (1b) Agena Ozidiser (1b) Agena Fuel (1b)	2,015 4,762 1,866	2,011 4,762 1,868
Launch Azimith (deg)	172	172.4
Thor Roll Program (deg)	9.48	9.1
Thor Main-engine Outoff .		
Time (sec) Altitude (nm) Velocity, Inertial (ft/sec) Flight Path Angle, Inertial (deg) Range (nm)	164.84 41.47 13,760 17.63 84.83	164.89 41.52 13,456 18.35 82.1
Vernier-engine Cutoff		
Time (sec)	173.84	174.48
Start Beparation		
Time (sec) Weight	183.84 8,471	182.31 8,469
D-timer Hold	1	
Start (sec) Stop (sec)	221 244.8	<u>221.73</u> 248.43
Countried 5		
Start (sec) Stop (sec)	223 244.8	224.18 248.43
Counseld 6		
Start (sec) Stop (sec)	244.8 254.53	248.43 261.63
Thor Coast Apoges		
Time (sec) Altitude (nm) Bange (nm) Velocity, Insertial (ft/sec)	345 102 455.73 12.947	346.2 104.03 444.4 12.576

Table 5-1 SUMMARY OF CRITICAL DATA

5-2

SECRET

LOCKHEED ALICRAFT CORPORATION

MISSILES and SPACE DIVISION

1

Table 5-1 (Continued)

	Brent	Dunkturk	
	Among - and many his	· Freilsted	Actual
	Agens - 90% Thrust Attainment Time (sec) Weight (lb) Altitude (nm) Velocity, Inertial (ft/sec) (C4. Flight-Fath Angle, Inertial (Explose) Range (nm) Orbital Boost Burning Time (sec) Average Flow Rate, Total (lb/sec) Specific Impulse (sec) Horisontal Velocity-to-be-gained, Inertial, 90% P to 70% P (ft/sec) Agens Burnout Time (sec) Weight (lb) Altitude (nm) Velocity, Inertial (ft/sec) Injection Angle, Inertial (deg)	273.92/277.2 8,416 93.36 13,081 7.36 310.19 112.71/112.7 57.46 277.5 (e)(d) (e)(e) 13,073/13,164 386.63/389.9 1,918 104.3 26,032	277.78 8,415 95.14 12,728 7.28 309.0 115.78 56.38 280.3 13,516 393.56 1,874 104.62 26,126
l H	Iongitude (Geodetic)(deg) Latitude (Geodetic)(deg) hitial Orbit Parameters	629 119.15W 24.33T	22 632.6 119.18 24.23
	Recentricity Periges Altitude (nm) Periges Longitude Pass 0 (Geodetic)(deg) Periges Latitude Pass 0 (Geodetic)(deg) Apoges Altitude (nm) Apoges Longitude Pass 0 (Geodetic)(deg) Apoges Latitude Pass 0 (Geodetic)(deg) Period (min) Inclination (deg) Reported Lifetime (days)	.0371 104.3 119.15W 24.33W 3777.9 49.22E 23.518 93.44 79.63(1) 1,788 25	.046 103.5 118.51¥ 19.31¥ 441 50.63¥ 12.168 94.54 79.63 1,785 30(g)

10

E:

= 35 H of a ral gas

LOCICHEED AIRCRAFT CORPORATION

SECRET

5-3

Brent	Predicted	Actual
Average Regression Rate, 17 Passes (deg/orbit)	23.52	23.78
Re-entry		
Retro Ignition Longitude (Geodetic) (deg) Retro Ignition Latitudé (Geodetic) (deg) Impact Longitude (Geodetic) (deg) Impact Latitude (Geodetic) (deg) Re-entry Pass	165.59 W 51.29 J 158.82 W 23.98 J 17	169.67 W 50.05 J 162.35 W 17.1 J 17
Telemetry Ship Location (at Launch)		
<u>M0-161</u>	16.0° ¥ 117.72° ¥	On Station

Table 5-1 (Continued)

LOCKHEED AIRCRAFT CORPORATION

SECRET

. .

LMED-446340-56

ļ

Ĵ 3 **a** a a 1 N 2 Ţ k Ĵ • Ż 1 3 R 21 7 Ĩ 3 22 . 1 3 3 6 RI A 1 1 2 1][**þ** 2 22 3 Þ 3 83 3 ł j A 8 Ä 32 R :: ; i 1 ģų 1 5 2 3 ł 3 3 72 æ

SECRET

PATION TAME 1-3

-SEGRET

The D-timer brake command transmitted was for 24.6 seconds. A computer simulation using raw radar-tracking data yielded a value of timer brake command of 23.6 seconds with a 3s error of plus or minus 5.7 seconds. The simulation value for Command 6 velocity correction was 14.5 seconds with an error of plus or minus 15 seconds. The actual command transmitted was 13.2 seconds, corresponding to an excess velocity of 68 ft/sec. The yaw reorientation program after engine burning was as required and the correct orbital pitch program was begun at the proper time.

The Agena engine performance was nominal. Shutdown occurred by integrator command after a velocity gain of 13,530 ft/sec, approximately 240 ft/sec more than the predicted available. Galculations indicate that the propellant utilization was better than predicted and that the specific impulse was 281.8 lb-sec/lb higher than the predicted (280.0 lb-sec/lb.).

Flow rates calculated from the turbine speed and the integrator indicate that the residuals on board and Agena burnout weight were 30 pounds less than predicted for oxidiaer exhaustion. This reduction of satellite shutdown weight was caused by an increase of at least 24 pounds in the available impulse oxidiser. Since the engine was shut down by the integrator, and incipient propellant exhaustion was not indicated, an additional 12 pounds of oxidiser were probably available. This means that approximately 36 pounds of impulse oxidiser were available above that predicted. The residual weights as determined from the integrator data and from the trajectory simulation are in close agreement with those determined from turbine speed.

Oxidiser and fuel-pump inlet pressures were correctly maintained and the retro- and ullage-rocket performances were nominal as indicated by normal separation from the Thor booster and by the control-system offsets at the time of ullage-rocket ignition. A summary of propulsion performance is shown in Table 5-4. Beacon-tracking performance was satisfactory until normal loss of signal by both VTS and MTS. Commands 5 and 6 were properly transmitted and verified.

LOCKHEED AIRCRAFT CORPORATION

SECRET

LMSD-446240-56

PKO.	PULBION PI			1. A.	
	SPACINI-		D	• • • • • • • • • • • • • • • • • • •	
	CATION	(a)	(b)	(c)	(đ)
Performance Data					
Velocity Increment (ft/sec)		13,284	13, 535	13, 505	13,540
Specific Impulse (lb-sec/lb)	278.0 min	280.0	282.3	261.7	261.3
Total Impulse (106 1b-sec)		1.817	1.840	1.836	1.836
Thrust Duration (sec)	120 ± 6	113.50	115.78	115.78	115.78
Ingine Thrust (1b)		16,005	15,890	15,856	15,860
Combustion-Chamber Pressure (psis)	500 nom	516.6	712. 8	511.8	9.11
Ingine fotal Flow Rate		57.16	5.29	5.29	%. 38
Turbine Speed (rym)	24,000 nom	24,900	24,640		
Acceleration at Ingine Shutdown (g)		8.31	8.38	8.31	8.41
Weight and Flow Data]			
Total Oxidizer Loaded (1b)	4762	4762	4762	4762	4762
Total Fuel Loaded (1b)	1866	1866	1868	1868	1868
Total Propellant Loaded (1b)	6628	6628	6630	6630	6630
Oxidizer Flow Bate (1b/sec)		41.20	40.59	40.99	40.66
Fuel Flow Rate (1b/sec)		15.96	15.70	15.70	15.72
Total Flow Rate (1b/sec)		77.16	5.29	5.29	56.38
Agena Thrust-Attainment Weight, 90% P. (1b)		8416	8415	8415	8415

Table 5-4 PROPULSION PERFORMANCI

(a) Predicted performance is based on the engine-acceptance performance and on oxidizer exhaustion.

- (b) Based on telemetered propulsion data. Performance calculated from turbine speed (for flow rates) and the narrow-band chamber-pressure measurement (for thrust).
- (c) Based on the acceleration integrator.
- (d) Based on trajectory simulation of redar data. Velocity increment shown is calculated from specific impulse and thrust from the simulation. The simulation resulted in a net horizontal velocity increment of 13, 514 ft/sec.

LOCICHEED AIRCRAFT CORPORATION

5-9 SECRET

Table 5-4 (Continued)

	SP CIPI-	PERDICITED			D
	OASTICK	(a)	(b)	(c)	(d)
Weight and Flow Data					
Agena Weight at Shutdown (1b)		1996(e)	1896	1896	1885
Ingine-Propellent Mixture Batio	2.57 nom	2.581	2.586	2.586	2.586
Remaining Oxidiaer Tapules Weight		0	-24	-24	-32
Remaining Fuel Ingulae Weight (1b)		15 ·	9	9	6
Oxidiser Total Residual (1b)		79	55	55	47
Fuel Total Residual (1b)		5	50	50	47
Bysten Date					
Oridiser-Pump Inlet Pressure (psia)	40 min	65 to 71	62 to 70		
Fuel-Pump Inlet Pressure (peia)	34 max	55 to 37	55 to 57		
Oridiaer-Pump Inlet Temperature		5 0	55 to 56		
Fuel-Fump Inlet Temperature (°7)		50	劳动为		
Thrust Overshoot (%)	50 mmx	24	18,4		
Thrust-Attainment Time (sec)	1.3 to 1.9	1.44	1.45		

- (a) Predicted performance is based on the engine-acceptance performance and on oxidizer exhaustion.
- (b) Based on telemetered propulsion data. Performance calculated from turbine speed (for flow rates) and the narrow-band chamber-pressure measurement (for thrust).
- (c) Based on the acceleration integrator.
- (d) Based on trajectory simulation of radar data. Velocity increment shown is calculated from specific impulse and thrust from the simulation. The simulation resulted in a net horizontal velocity increment of 13, 514 ft/sec.
- (e) Based on actual propellant load and satellite weight.

5-10

SECRET

LOCKHEED AIRCRAFT CORPORATION

In general, the telemetering performance was satisfactory. The horizonscanner temperature monitor was intermittent during engine firing, and the hydraulic-motor battery indicated an open point. The hydraulic-pressure monitor and its excitation-voltage monitor were measured. Both monitors exhibited the same pressure shifts and the data are suitable only for telltale use. Through error the plus 28-volt monitor was not wired to the telemeter but, due to the flight schedule, it could not be corrected prior to launch.

TRAJECTORY

Discoverer XIV launch trajectory, as presented in Figures 5-2, 5-3, and 5-4, was determined from the MTS VERLORT data. The ascent data were substantiated by trajectory coverages from the VERLORT at Vandenberg Tracking Station (VTS) and the FPS-16 skin-track radar and metric optics of the Pacific Missile Range (PMR). A summary of critical data is included as Table 5-1.

At first-stage burnout, the velocity was approximately 304 ft/sec lower than predicted, with a flight-path angle approximately 0.7 degree higher than nominal. The altitude and burning time were approximately nominal. At the time of main-engine cutoff, the azimuth heading was about 0.4 degree west of nominal.

The combination of conditions at main-engine cutoff resulted in a flight which closely paralleled the predicted altitude trajectory during the coast phase. Thor apogee was 2, 04 nautical miles higher and velocity was 371 ft/sec lower than the predicted coast apogee conditions.

Agena engine ignition (90% thrust attainment) occurred 3.86 seconds later and the burning time was 3.07 seconds longer than predicted.

5-11 SECRET

.

LMSD-446240-56

Using a specific impulse of 281.3 seconds, the integrated longitudinal acceleration due to axial thrust was calculated to be 13,516 ft/sec. Based upon the Reeves computer calculation, a horisontal velocity-to-be-gained of 13,505 ft/sec was commanded.

At Agena engine ignition, the altitude was about 1.8 nautical miles above nominal, with the velocity about 350 ft/sec low. The Agena engine burning time was approximately three seconds longer than nominal. At shutdown, the altitude was near nominal, with the velocity about 94 ft/sec higher than nominal.

A successful orbit was attained. The eccentricity was slightly greater than nominal (. 009) due to a small negative flight-path angle (minus . 22 degree) at injection. The period was increased by 1.1 minutes.

Agena orbit tracks for Passes 0, 1, and 2, and 15, 16, and 17 are shown in Figures 5-5 and 5-6, respectively.

ORBITAL PHASE

Environmental and power measurements made during orbit were normal (Tables 5-2 and 5-3). The JUH/APL beacon failed to operate. Since the monitor of the hydraulic battery which powers this beacon in orbit was open, the indication of proper battery operation was the fact that the optical tracking lights, also operated from this battery, functioned properly. Examination of the associated circuitry (Fig. 5-7), shows that a ground on the negative side of the battery could have caused this failure. This circuit will not be used on future flights,

• Orbital guidance and control was not correct during Passes 1 and 2 but became normal following Passes 1 and 2. Control-gas expenditure was normal after Pass 2 following abnormally high use during Passes 1 and 2. The only performance variance indicated subsequent to Pass 2 was the higher-thannormal pitch-horison-scanner offset (Fig. 5-8).

5-15

SECRET

LOCKHED AIRCRAFT CORFORATION

Figure 5-5 Agena Orbital Tracks Following Launch

5-16

LOCKHEED AIRCRAFT CORFORATION

SECRET

5-17

SECRET

LOCICHEED AMCRAFT CORPORATION

All flight data were reviewed in detail, and it was concluded that the failure occurred in an active element of the pitch-torquer circuit, specifically in either of the two inertial reference package (IRP) amplifiers (Fig. 5-9). Of the two possibilities, the power amplifier was most suspect since the preamplifier operates at a relatively low-power level and could not have produced the effects indicated.

Tests were conducted at the guidance laboratory in an effort to duplicate the apparent gain variance indicated in flight and shown in Figure 5-10. By simulating a power-transistor failure in the final stage of the test amplifier, its gain characteristics showed close correlation with that indicated. This appears to be the reason for failure to pitch down properly. Further, this mode-of-failure, if initially intermittent, would draw high currents from the power supply and explain the anomalies indicated by the Pass 1 data. Therefore, conclusions are that the transistor failed during Pass 2, and the modeto-failure was intermittent, starting early in Pass 1 and terminating during Pass 2.

During this period, the horisontal-attitude reference was lost, due probably to the inability of the pitch-channel input to the pitch-gyro torquer to provide adequate signals for maintaining the required orbital pitch rate. Consequently, large attitude errors occurred after which the horison scanner lost its ability to command the system intelligently. The scanner outputs under conditions of extremely large attitude errors become somewhat random in nature and cause equally random satellite attitude errors. It is believed that the random scanner outputs, together with the amplifier-failure effects to the power supplies, coupled with other elements of the control system to cause the high gas expenditure. After Pass 2, the IRP amplifier assumed the state shown in Figure 5-10 and functioned marginally but adequately at the low-orbital-rate inputs until control was resumed.

Although the mode-of-failure is clear, the exact cause of failure is as yet undetermined. The prelaunch test data, Missile Assembly Building (MAB), and pad systems test data indicate the amplifier performed properly during

5-20

LOCKHEED AIRCRAFT CORPORATION

-SECRET

Figure 5-10 Amplifier Gain Characteristics

5-22 SECRET

MISSIES and SPACE DIVISION

LOCKHEED AIRCRAFT CORPORATION

all test phases. Therefore, it appears that there were no design discrepancies at the time of launch. Also, no performance anomalies were indicated during the ascent phase of the actual flight. (During this period, the most severe environmental conditions are encountered.) One other flight anomaly was attributed to a failure of the same power amplifier: the accelerometer malfunction on Discoverer VIII (Agena 1050). The action taken as a result of an analysis of the problem at that time was to make modifications to the units in the form of improved insulation against electrical shorting. The units in Discoverer XIV contained said modifications and further effort along these lines would be superfluous. Tests of the units are continuing, and the history, with respect to failures, in being reviewed. Until those investigations are completed, no effective recommendation can be made.

S-Band Beacon

.S-band beacon tracking on orbit was satisfactory; however, command difficulties were experienced during some passes and the transmitter exhibited an unusual frequency change while in orbit. The problem of command difficulties was not related to that of transmitter frequency shift, since the command problem would only be caused by ground station difficulties, satelliteborne receiver or decoder difficulties, or by interference from other radars. Gommands sent by each station during each pass are listed in Table 5-5. Gommand difficulties were experienced by KTS during Pass 1, by VTS during Pass 9 and by KTS and HTS during Pass 10. When both the ground station and the satellite-borne equipment are functioning properly, two tone verifications are telemetered back to earth each time that a command is received and executed. In the cases of difficulties during Passes 1 and 10, only one of these verifications was telemetered back; Tone A was not verified in these instances.

After Pass 1, KTS ground equipment was checked and the Command Tone A modulation was found to be below nominal. This command tone was adjusted to the nominal value and KTS was able to command the satellite during Pass 2. VTS reported sending a command during Pass 9 without receiving verification.

LOCKHEED AIRCRAFT CORPORATION

SECRET

5-23

5-25

SECRET

LOCKHEED AIRCRAFT CORPORATION

In each of the above cases of command difficulty, verification of Command Tone A was not received by the ground station, but other tones were properly verified. These difficulties occurred because the decoder circuitry did not receive sufficient energy to operate the command relays. This condition can occur whenever the modulation of command tones in the ground station is set too low, when severe radar interference exists so as to jam the beacon receiver, when beacon decoder circuitry is marginal in operation, or when any other abnormality exists which prevents the receiver from receiving all pulses transmitted from the ground station. The decoder can be provided with more energy by either increasing the command tone modulation or by increasing the transmitter pulse recurrence frequency (PRF) at the ground station. In this instance, apparently early in the flight the decoder circuitry operational capability was marginal and further deteriorated during later passes.

The frequency of the beacon transmitter is normally set at 1 megacycle above the nominal frequency just prior to launch. As the beacon cools while in orbit, the transmitter normally drifts to 1 megacycle below nominal. However, in this case the drift was in the opposite direction. This transmitter was supposedly near-nominal frequency at launch; but, later investigations proved that it was 4 megacycles above nominal. At the end of Pass 9, the frequency had shifted to 8 megacycles above nominal, and it remained stable at this value throughout later passes. The temperature of this beacon dropped in the normal manner during the first few passes and remained stable at a value which is approximately normal for orbital operation,

The only factors, other than temperature, which affect the transmitter frequency are the position of the tuning slug in the transmitter cavity resonator and the voltage standing-wave ratio (VSWR) of the antenna circuit. Postflight investigations have shown that only slight loosening of the coaxial connector between the transmitter cable and the antenna will change the VSWR and also the transmitter frequency.

5-26

SECRET-

LOCKHEED AIRCRAFT CORPORATION

This fact suggests the possibility that this connector became slightly loosened during launch. Future occurrences of this type will be prevented by a rigid prelaunch inspection of the coaxial-cable connectors. A new type of antenna which utilizes more suitable connectors is under development and will be used when it is proven to be sufficiently reliable.

Orbital performance of the continuous-wave acquisition transmitter was normal and it was successfully tracked by all stations.

Orbital Timer

The orbital timer properly braked the D-timer during launch and operated satisfactorily through Pass 25. Difficulties in changing the timer period (Command 1) and resetting the timer (Command 3) involved the VERLORT ground radar and the 3-band satellite radar beacon. Both timer Commands 1 and 3 utilised Tone A, the tone that was difficult to verify. Step commands (Command 2) used Tones B and C, thus no problem was encountered in obtaining proper verification.

Table 5-6 shows the timer period as indicated by stepping-switch position, preflight calibration, and actual period as determined from observed events. Timer drift was within specifications, with a total error of 13.7 seconds between Passes 8 and 10 "Reset Monitor ON" points. The average error (between switch setting and observed events) was approximately 7 sec/pass. The average error between "Reset Monitor ON, Pass 15" and "Reset Monitor ON, Pass 25" was greatly improved (1 sec/pass).

Since command difficulties were experienced during early passes, it was decided to transmit the reset command for 30 seconds continuously during Pass 15. The telemetry data show that the reset monitor responded approximately one-half second after the command was received; however, the reset monitor voltage fluctuated for the duration of the 30-second period. This was not a malfunction of timer circuitry but an indication that can be considered normal due to the long period of the command. One relay in the circuitry is normally energised only momentarily when command duration is for

LOCKHED ANCRAFT CORPORATION

-SECRET

5-27

-SECRET-

Table 5-6 ORBITAL-TIMER ACCURACY

Brror Between Timer Period (Sec) Switch Position THE REPAIR Observed. Preflight Svitch And Observed Events Ivents Calibration Position (Sec/Maps Orbit) Reset Monitor "OH". Pass 8, to set Monitor "OF" Pass 10 Reset Monitor "OH", Pass 15, to eset Monitor "CH", **Tuss** 25

I second. This relay energiess several others, and the high currents required cause a drop in voltage at the reset monitor point. Since the first relay is connected so as to interrupt the current to its own coil after it becomes energiesd, it will keep cycling when a steady-state voltage is applied. This causes cycling of other relays and, consequently, a fluctuation of voltage at the reset monitor point. This fluctuation may be expected whenever the reset command is transmitted for long periods. The reset monitor remained stable at the reset position as soon as transmission of the command ended.

Beckman monitor readout equipment readings were still erratic during this flight and were unreliable from accuracy and dependability standpoints. It is felt that insufficient amplitude of the subcarrier signal is partially responsible for the poor quality of period readout. Action should be taken to assure proper pre-emphasis of this channel during prelaunch satellite checkout. Orbital-timer events are tabulated in Table 5-7.

LOCKHEED AIRCRAFT CORPORATION

5-28 SECRET

MISSILES and SPACE DIVISION

2

LMSD-446240-56

Table 5-7 ORBITAL TIMER EVENTS (SECONDS)

5-29 SECRET

MISSILES and SPACE DIVISION

LOCKHEED ANCHAPT CONFORATION

LMSD-446240-56

Table 5-7 (Continued)

	System Time (Sec)]	
Brent	Computed. (ACQ)	Descreed (382)	Besultant Pariod (Sec)	Observing Station
Pass 9				
B, I/M Fistes On and Reset Enable				
Reset Monitor On				
Reset Disable and B, T/M Flates Off				
Page 10	X/////////////////////////////////////			
B, T/M Flates On and Reset Mable	9.7771111111111111111111111111111111111			
Beset Monitor On		<i></i>		
Reset Disable and B, I/N Flates Off	9,477,1777777777777777777777777777777 6,411,			
Page 15				
B, T/M Plates On and Reset Mubble				
1 Reset Command.				
Reset Disable and B, T/M Flates Off				
Page 16				
B, T/M Plates On and Reset Mable			, ////////////////////////////////////	
Reset Monitor On				
Reset Disable and B, T/M Flates Off				
	08/////////////////////////////////////	X ////////////////////////////////////	<u> </u>	

5-30

SECRET

LOCKHED AIRCRAFT CONFORATION

Table 5-7 (Continued)

	System Time (Bec)			
Ivent	(AOQ)	Observed. (SIDE)	Regultant Pariod (Sec)	Observing Station
Pass 17				
B, 2/M Fistes On and Reset Musble				
Reset Monitor On				1
Reset Disable and B, T/M Flates Off			Mpuuumilli 1.	
Pass 24				
B, T/M Plates On and Reset Enable	()))))))))))))))))))))))))))))))))))))			
Reset Monitor On .				
Beset Disable and B, T/M Flates Off	lpnniñ illi.			
Pass 25				
B, 1/M Flates On and Reset Enable				
Baset Monitor On			1	
Reset Disable and B, T/M Flates Off				

SECRET

LOCICHED AIRCRAFT CORPORATION

Section 6 Telemetry and instrumentation

SATELLITE TELEMETRY

No major problem areas were encountered with the satellite FM/FM data link and the primary telemetry objectives were achieved through launch and orbit. Signal strength appeared normal and the telemetry data received were of excellent quality. However, discrepancies were noted on the following individual data points:

- a. Horison-scanner temperature (D82) was intermittent during engine firing; data levels prior to and subsequent to this period seemed normal.
- b. Separation monitor (A93) exhibited switch vibration at liftoff. At separation, the trace went beyond the synchronization level, but the step voltage was clearly discernible.
- c. The 28v regulator monitor (C2) was not wired to the telemeter. This was noted prior to launch but the flight schedule precluded a fix.
- d. Hydraulic-battery motor-voltage monitor circuit (C21) to the telemeter opened at approximately 106 seconds. It was apparently intermittent, since contact was remade prior to Pass 15 and a near-nominal reading was indicated. The appearance of the commutated record suggests an open circuit between the subcarrier input and the monitor itself.
- e. Hydraulic pressure (D1) and excitation-voltage monitor (TI-2) for the D1 transducer appear to have been miswired. Both measurements exhibited the same pressure shifts and showed variance with predicted changes when correlated with the calibrations. The accuracy requirement for this measurement is only plus or minus 10 percent, but the data from this flight are suitable only for telltales.
- f. Timer-motor frequency (H110) was reported as unsuitable for real-time operational use. Investigation of the pre-emphasis settings and laboratory test of this monitor are being conducted.

6-1

LOCKHED AIRCRAFT CORPORATION

LMSD-446240-56

CAPSULE INSTRUMENTATION

A limited amount, three channels, of telemetered instrumentation was installed in the Agena 1056 recovery capsule to determine:

- a. Operation of retro and recovery systems (breakwire and microswitch-type telltales)
- b. Betro accelerations and velocity (one axial accelerometer)
- c. Thrust cone and 2AS thermal battery operation (voltage monitors).

Data were not obtained from these three channels due to failure of the telemeter to radiate. Information from sources other than telemetered data and capsule recovery indicate the capsule retro and recovery systems and programmers operated nominally.

CAPSULE TELEMETRY

Data were not obtained from the capsule telemetry data link. Postflight tests on the recovered telemetry system indicated that the sould in the telemeter battery shorted, activating the battery but causing a voltage drop that allowed less than a minimum pickup voltage to reach the relay. The relay did not close to allow voltage from the telemeter battery to reach the transmitter.

The wire carrying the telemeter-activating signal from the Agena to the capsule was 22 gage, and a short would drop the voltage well below the minimum pickup voltage at the relay, since the squib and relay were in parallel. This circuit will be changed in future Agenas by placing a fusible resistor in series with the telemeter battery squib to protect the wiring and allow the relay sufficient activation voltage.

Signal-Strength Studies

A special study was conducted to determine the extent of telemetry coverage which might have been obtained had the capsule telemetry unit operated. This study considered capsule trajectory, mobile tracking station deployment,

> 6-2 SECRET

LOCICHEED AIRCRAFT CORFORATION

and nominal signal strength from a 1.2-watt transmitter. Figure 6-1 depicts Agena 1055, 1056, and 1057 recovery talematry coverage. The depicted chart was used in the study, results of which were:

<u>KTS:</u> Any reception at this station is considered improbable due to excessive range and low receiving-antenna angle.

Northern WV-2: About 50 seconds of data (\$1775 to \$1825 seconds system time) should have been obtained, and these data would have included the separation sequence. However, the electric storm reported in this area might have caused sufficient interference to preclude satisfactory coverage.

Haiti Victory: Approximately 75 seconds of data (\$2150 to \$2225 seconds system time) would have been obtained. These data might have covered the RF-blackout period but probably not the parachute-recovery phase.

<u>Southern WV-2:</u> About 50 seconds (82200 to 82250 seconds system time) of data would have been obtained. This coverage would partially duplicate that of the USS <u>Haiti Victory</u> but probably would not have included either the blackout area or the parachute-recovery phase.

<u>USS Dalton Victory:</u> A few seconds of data might have been obtained during parachute deployment and descent.

<u>Hawaii</u>: Approximately 300 seconds of data (\$2200 to \$2500 seconds system time) should have been acquired. These data probably would have included blackout and recovery areas, duplicating the data of both ships and the southern WV-2.

Tailure to obtain capsule telemetry data was attributed to malfunction of the circuitry which applies power to the transmitter. In spite of the complete absence of telemetry signals, the time that the events of the retro phase occurred was accurately determined from KT5 data. This was possible because the small explosions resulting from the firing of squibs caused ionised gas to surround the VHT-beacon antenna, producing severe drops in the beacon signal strength. Further, the retrorocket firing caused ionised gases to surround the Agens telemetry antenna resulting in a severe drop in

> 6-3 SECRET

MISSILIS and SPACE DIVISION

LOCKHEED AIRCRAFT CORPORATION

Figure 6-1 Agens 1055, 1056 and 1057 Recovery Telemetry Coverage

Agena-telemetry signal strength. A comparison of these drops in signal strength with the system time yielded the correct times for the occurrence of the retro-phase events.

The only event which could not be timed accurately was the initiation of the separation signal. Gases resulting from the electrical-disconnect squib firing were not yet dissipated at the time the separation signal occurred; therefore, the drops in beacon signal strength overlapped in time. The time at which the gases resulting from separation were dissipated was accurately observed and an approximate time for separation can be determined. Rotation of the capsule during the retro phase caused variations in the signal strength, since the beacon antenna position with respect to the ground station receiver was constantly changing. These variations made possible the calculation of the spin rate. Because the beacon signal faded shortly after the retro events were completed, insufficient data exist for calculation of the residual spin rate. The data from HTS are inadequate for calculation of residual spin rates, as Hawaii did not acquire the signal until more than 300 seconds after the retro phase was completed.

6-4

-SECRET-

LOCKHEED AIRCRAFT CORPORATION

A reproduction of the KTS VHF-beacon and Agena-telemetry signal strength records is shown in Figure 7-3. The drops in signal strength which were used for timing of the retro-phase events are indicated in this figure. Event 1 is the electrical disconnect and Event 2 yields the time at which separation was completed. Events 3, 4, 5, and 6 represent spinup, retrorocket ignition, despin and thrust-cone separation, respectively. The spin rate during the burning of the retrorocket is clearly visible in the signal variations. All retro events occurred in proper time relationships and actual versus nominal times for these events are included in Table 7-1.

MISSILIS and SPACE DIVISION

LOCKHED AIRCRAFT CORPORATION

SECTION 7 CAPSULE PERFORMANCE

1

.

LMSD-446240-56

SECTION 7 CAPSULE PERFORMANCE

The Discoverer XIV retrograde phase was initiated on Pass 17 and was preceded by the following orbital conditions:

Altitude	791, 429 feqt		
Geodetic Latitude	50.05 degrees north		
Earth Longitude	169.64 degrees west		
Inertial Velocity	25, 953 ft/sec 163, 799 degrees		
Local Asimuth Angle			
Local Flight-Path Angle	-1, 415 degrees.		

With these conditions and with nominal theoretical retro conditions of $V_R = 1166 \text{ ft/sec}$ and a pitchdown angle of minus 60 degrees from the local horisontal plane, the Discoverer XIV capsule parachute deployment should have occurred at 23.68 degrees north latitude and 162.32 degrees west longitude,

However, the reported capsule position at 8500 feet altitude was 17. 1 degrees north latitude and 162. 35 degrees west longitude or 395-nautical miles downrange of the predicted point of parachute deployment.

CAPBULE ATTITUDE

The pitchdown rate as determined from Agens telemetry was considerably less than the required 45 deg/min, resulting in a significant error in pitch attitude at capsule ejection. Computations based on the actual data indicate a probable pitch attitude of minus 13.3 degrees with respect to the local horizontal at time of the capsule separation (Fig. 7-1). Pitchdown was determined in the following manner:

LOCKHEED AIRCRAFT CORPORATION

7-1 SECRET

LOCICHEED ANCRAFT CORPORATION

SECRET

7-2

MESSILES and SPACE DIVISION

LMSD-446240-56

nd SPACE DIVISION

-13.3

•	Degree
Initial Pitch-Gyro Offset from Horison (as indicated by horison-scanner and and gyro position)	_8.4
Ditch-Torone Brogram (13 55 deg/min	- Jo T
x 17. 5 sec)	+1.0
Pitch-Torque Program (-4. 0 deg/min z 77 sec)	-5, 1
Change in Local Horison (-4. 0 deg/min x 94. 5 sec)	-6. 3
Setellite Lagged Gyro at Command Separation by	+0.5
Setellite Basilian Balative to the Kovinan	

Possible variation of the above data could yield plus 1 to minus 5 degrees in determination of the relative position of the satellite to the horizon.

at Capsule Ejection

The pitch-torque program of 7 minus 4.0 deg/min was determined by investigating the pitch gyro, pitch-rate gyro and pitch-programmer data. These data were further substantiated by the data of the sun-position indicator which indicated a minus 17-degree pitchdown. The tolerance of the sun-position indicator angle is plus or minus 3 degrees.

Figure 7-2 shows the effect of the retrorocket firing angle on capsule-impact latitude under nominal retro conditions. From this curve, it can be seen that the retro-firing angle for the reported position of the capsule recovery was minus 15 degrees. This lies between the retro angular limits indicated by the sun-position indicator and guidance-control data.

RETRO PHASE

Capsule telemetry did not function on this flight, hence proper analysis of retro performance can only be accomplished by a study of VHF-beacon signal strength (Fig. 7-3, page 7-6), coupled with the knowledge that all events

7-3

SECRET

LOCKHEED AIRCRAFT CORPORATION

must have occurred properly for recovery to have been accomplished. This
study revealed the precise times for all countdown events. These are listed in Table 7-1.

the second se	 -	-
		-
		_
_	 	_

RETRO EVENTS DETERMINED BY VHF-BEACON SIGNAL STRENGTH^(a)

Brazit	Predicted Time (Sec)	Cbserved. Time (Sec)	Bystem 21me (Sec)
Beacon-Signal Acquisition		-	81746
Electrical Disconnect	0 Bef.	0	81809.45
Separation (capsule-Agena)	-		81811.50
Bydang	3.42.17	3.45	81812.90
Retro Ignition	1.25.1	1.2	81814.10
Despin	10.75 [±] .5+	10.95	81825.05
Thrust Cone off	1.5.15	1.53	81826.58

Actual Spin Rate: 64.7 rpm loginal

Spin Rate: 78 rps

Despin Rate was not obtainable

(a) Obtained from MTS. Figure 7-4 shows the Agens and capsule trajectories during the re-entry phase for the minus 15-degree retro-angle case.

SUBNOMINAL SPIN-UP

LOCKHEED AIRCRAFT CORPORATION

As in the retro phase of the Agena 1057 flight test (see LMSD-446240-57), the capsule spin rate was subnominal for Agena 1056. In the latter case, the prescribed spin of 78 rpm was somewhat higher than in the former (55 rpm), but the observed rotation was subnominal by roughly the same percentage in both cases. According to the signal-strength traces of the capsule-borne VHF beacon, the Agena 1056 capsule rotated at 64.7 rpm before despin.

> 7-5 SECRET

LOCKHEED AIRCRAFT CORPORATION

LOCINED A CIMIT CORRENTION

> LS and ShC: M 20

Under nominal temperature and inertia conditions, the percentage by which the spinup is subnominal would reflect the density of an actuating medium of nearly pure molecular nitrogen rather than the prescribed mixture of 90 and 10 percent of nitrogen and Freen, respectively.

It has been past practice well before launch to introduce the two gases into a diffusion bottle, and subsequently to withdraw what was presumed to be the proper mixture for introduction into the capsule-borne reservoir. For the flight test of Agena 1057, the time for premixing was about three hours, and since the diffusion time proved insufficient in that case, the premixing period was increased to some 70 hours for the Agena 1056 flight test. However, little or no improvement resulted.

With the wide difference between the two specific densities (0.07807 for molecular nitrogen and 0.33 1/3 for CCl_2F_2 , a typical Freen), the gravitational force of separation manifestly predominated over the diffusion force, which, in the absence of continued mechanical agitation, must have relied upon the Brownian effects arising from ambient thermal conditions.

Henceforth, the two gases will be individually introduced directly into the capsule reservoir. The agitation effects of the ascent dynamics would promote some degree of mixture, which should persist fairly well under the low-gravity conditions encountered on orbit. There would be separative influence from the centrifugal effects of spinup itself, but since the spin phase endures for only about a dozen revolutions, and these at relatively low rates (about one cps), the influence should be trivial.

LOCKHEED AIRCRAFT CORPORATION

SECTION 8 RECOVERY OPERATIONS

ě

1

LA18D-446240-56

SECTION 8 RECOVERY OPERATIONS

The Discoverer XIV recovery operation was successfully completed by aerial recovery of the capsule at 2309 GMT, 19 August 1969. Recovery was accomplished by C-119 Number 9 at 17 degrees, 6 minutes north latitude; 162 degrees, 21 minutes west longitude. This was the first aerial recovery of a capsule ejected from an orbiting satellite and the second capsule recovery during the Discoverer series, both recoveries having been accomplished in a period of eight days. The operation proceeded in a generally satisfactory manner as evidenced by the successful recovery.

PRERECOVERY OPERATIONS

All prerecovery briefings were accomplished in an orderly manner. Both Victory ships were on station at their normal times and all units participated in the operation with the exception of RG-121 Number 3 which was forced to abort its mission when one engine went out. Changes in impact area were of sufficiently small magnitude to allow all units to correct accordingly prior to estimated time of parachute deployment (ETPD).

CAPSULE TRACKING OPERATIONS

The flight objective of tracking the re-entering capsule was attained by the combined tracking of the Agena satellite prior to separation, tracking of the capsule VHF-beacon transmitter during the re-entry phase, and by radar tracking of the chaff cloud. The capsule telemetry transmitter did not function during the recovery operation, and there was no 5-band beacon on the capsule. Tracking of the capsule VHF beacon was very successful and radar tracking of the chaff cloud was of assistance in the final phase of the recovery operation.

8-1

SECRET

LOCICHEED AIRCRAFT CORPORATION

LM8D-446240-56

Surface Tracking Stations

No acquisitions were reported by Christmas Island or Barking Sands. The Hawaiian Tracking Station (HTS) acquired the capsule VHF beacon at 2249:13 GMT and was able to track until 2250:30 GMT (Fig. 8-1), but the distance was too great to allow complete tracking and data recording. South Point reported capsule VHF-beacon acquisition at 2305:05 GMT for a period of 55 seconds. Both Victory ships were able to acquire and track the capsule by means of the VHF-beacon transmissions.

Tracking of the VHF Beacon. The Kodiak Tracking Station (KTS) was tracking the Agena by both radar and satellite telemetry signals at the time the capsule VHF beacon began transmitting. The beacon came up to full power, and KTS received a strong signal at \$1746 seconds system time. This was approximately 64 seconds prior to capsule separation, and KTS received strong signals for a total of approximately 84 seconds, successfully tracking the beacon through all retro-phase events.

The capsule VHF-beacon signals were received by 12 aircraft of the recovery force, by the USS <u>Haiti Victory</u>, the USS <u>Dalton Victory</u>, HTS, and the South Point tracking station. Barking Sands and Christmas Island stations reported no contacts. The first unit of the recovery force which reported reception of the beacon signal was the USS <u>Haiti Victory</u> at 82010 seconds system time. The longest contact was reported by the USS <u>Dalton Victory</u> which tracked the beacon for a total of approximately 30 minutes.

The VHF-beacon frequency was sufficiently stable for tracking purposes. KTS reported that the frequency was 0.1 megacycle low at the time of fade. The recovery force reported various changes or drifts in frequency which ranged from 2 megacycles below nominal to 3 megacycles above nominal. The USS <u>Dalton Victory</u>, having the longest period of reception, reported variations of 0.2 to 0.5 megacycles below nominal.

LOCKHEED ANCRAFT CORPORATION

LMSD-446240-56

Airborns Telemetry Stations

Only the JC-54 Number 1 aircraft was able to track the capsule on the VHFbeacon frequency. The duration of VHF-beacon track was four minutes (2249 to 2253 GMT) at 237.8-mc frequency. No bearing information was obtained by JC-54 Number 1, because the aircraft does not have directionfinding (DF) capability. JC-54 Number 4 acquired a signal at 228.2 mc, the capsule telemetry frequency. However, both the aircraft's location with respect to the point of recovery and the time of acquisition (2315 to 2338 GMT) indicate that the signals were erroneous.

The WV-2 aircraft, serving in the capacity of prerecovery frequencyinterference control and tracking/recording of capsule acquisition during recovery, successfully tracked the VHF beacon during recovery. Acquisition was reported from 2248 to 2252 GMT and then from 2254 to 2308 GMT on a bearing of 171 degrees true (Fig. 8-2). No telemetry was observed. Prior to ETPD, four extransous signal frequencies were noted; none were considered to have negative effects on the recovery with the exception of a signal at 234.9 mc. This signal was evident from 2035 to 2237 GMT. The signal would appear for a short period of time, disappear for a period of 10 to 15 minutes, and then reappear again. The signal was never present long enough to enable the WV-2 to obtain a directional bearing. The signal could have had a considerable effect on the operation if it had continued beyond ETPD.

The C-119 Number 9 aircraft obtained a Class A Capsule VHF-beacon signal approximately 10 minutes before visually sighting the parachute and capsule. Noted that this same aircraft reported a saturated signal on the Discoverer XIII operation and was the recovery aircraft on the Discoverer XIV operation. However, when it passed directly beneath the descending Discoverer XIV capsule prior to its first recovery pass, it experienced no saturation on its equipment. Accurate bearings were obtained by most of the stations receiving the signal; however, several of the northern aircraft received signals for only short periods and could not obtain accurate bearings.

8-4

SECRET

LOCKHEED AIRCRAFT CORFORATION

LMSD-446240-56

Radar Tracking of The Chaff Cloud. The operation was accomplished with three RC-121 aircraft after Number 3 aborted due to loss of Number 4 engine. Two aircraft registered possible chaff contacts. RC-121 Number 4 aircraft contacted the chaff on both radar sets. At 2255 GMT, the APS-20 radar, operating in the S-band, identified the chaff cloud at a range of approximately 127 nautical miles. At 2305 GMT, the APS-45 radar, operating in the X-band, had chaff indication at the 27,000-foot altitude and approximately 90 nautical miles. At 2308 GMT, the APS-45 very weakly indicated a possible parachute target at the 7400-foot altitude (recovery occurred at 8500 feet). Radar contact with the chaff cloud was maintained for approximately 15 minutes, at which time the success of the recovery operation was assured. The radar operators were unable to positively identify the chaff cloud and parachute as two distinct targets. Since the radar acquisition coincided with the C-119 DF bearing already being pursued, no additional vector was given. The C-119 Number 9 aircraft reported positive visual sighting of the descending parachute and capsule approximately 13 minutes before the air recovery was accomplished.

The RC-121 Number 2 aircraft reported a radar contact at a range of approximately 45 nautical miles prior to the radar contacts which were made by the RC-121 Number 4 aircraft. As the bearing to this radar target was in approximate agreement with the reported bearings on the VHF beacon, a possibility existed that this RC-121 had contacted the chaff cloud or parachute. Later reports from the RC-121 Number 4 and C-119 Number 9 aircrafts proved the RC-121 Number 2 contact to be some other object and the identity of this target was not established.

The beacon lights were not specifically necessary on this operation and recovering aircraft reported that the lights were not visible during the recovery passes although they were operable.

LOCKHEED ANCRAFT CORPORATION

LMSD-446240-56

RECOVERY FORCE OPERATIONS

Surface Recovery Units

Although not called upon to recover, the surface units were ready for recovery if necessary. An air pickup of data from the <u>USS Dalton Victory</u> was made by a G-119 from Hickam AFB on 20 August, the day following recovery.

Airborne Recovery Units

All nine C-119 aircraft and the one C-130 aircraft acquired the VHF-beacon transmissions during the recovery operation. All aircraft were at or near station location at ETPD. C-119 Number 9, the recovering aircraft, obtained reliable DF bearings from 2253:05 GMT through recovery at 2309 GMT. C-119 bearing data compared to the recovery point shows that bearing data were reasonably accurate, based on the fact that, as the aircraft approached the capsule, bearings could be refined and thus pinpoint the capsule location. Possible capsule passage through the ionisation layer is shown by an average loss of signals at 2251 GMT and then the reacquisition of signals at an average of 2255 GMT (Fig. 8-1). The high-speed passage of the capsule over the northern aircraft would then be apparent by their inability to obtain reliable bearings and rather short time of acquisition prior to "blackout".

Control of the force was considered good. Changes to impact location were handled adequately, and all essential equipment on the three aircraft was operational at ATPD. Reliability of the aerial method of recovery and the recovery gear was proven by the successful recovery of the capsule and by the lack of damage to the capsule during aerial recovery.

CONTROL, COMMUNICATIONS, AND WEATHER

Hawaiian Control Center (HCC) Operation

Control of the operation by the Hawaiian Control Center (HCC) was acceptable. The center is crowded by personnel and equipment, but this condition

LOCKHEED AIRCRAFT CORPORATION

can be expected to diminish by elimination of some operations considered essential only for the first successful recovery operations. With the increased amount of radio equipment, the HCC has become handicapped by lack of radio operators who are familiar with the program.

With the large recovery force, the HCC has become handicapped by a limited number of personnel available and qualified to debrief the returning recovery units. The majority of the units return to the base at the same time, making it difficult to accomplish the task smoothly. In addition, numerous other tasks of reporting and analysis are being accomplished simultaneously, making the overall workload for the period following recovery difficult to accomplish under the conditions.

Communications

Communications for this mission were generally good. The conversion to one frequency was satisfactory with no indication of an overloaded channel. The single-sideband equipment operated reasonably well for the first time since its installation and was useful as an HCC to RC-121 nst. Some difficulty was apparent, because some information from the C-119 sircraft did not appear on the HCC acquisition-information board. This condition was apparently a reception problem within the HCC. A continuing investigation of the entire recovery-operation communication system is being performed.

Weather

Weather for the operation proved, in nearly all cases, to be as predicted just prior to the operation. The weather in the recovery area was as follows: cumulus clouds 3/8 from 3000 to 6000 feet (occasionally 8000 feet) and cirrus clouds 2/8 with tops at 30,000 feet. The southern area also had alto-stratus at 10,000 to 12,000 feet. Visibility was 15 nautical miles to unlimited. The ballistic drift from 40,000 feet to sea level was 20 knots at 60 degrees. One aircraft, JG-54 Number 1, reported that weather affected his equipment to the extent that he was forced to change his position 50 nautical miles northward.

LOCKHEED ARCRAFT CORPORATION

8-8

LMSD-446240-56

CAPSULE CONDITION

When transferred into the recovery aircraft, the capsule condition was good with no exterior damage apparent due to recovery procedures. The capsule was still warm when pulled aboard the aircraft and had a burned small. Insulation on the cannon-plug wiring was reported to be burned off. The capsule was soot covered and the lights were slightly melted, indicating high temperatures during the re-entry phase. The wires on top, the antennas, and the strobe lights were disconnected after recovery. The gold-plated portion of the capsule was polished and undamaged. The parachute was stable, undamaged, and descending normally prior to recovery. The recovery operation shredded and slightly burned the parachute.

OPERATIONS SUMMARY

As shown, some problems still exist in the operation, although none of them were of a nature to preclude successful recovery. The synchronized operation of all personnel was again satisfactory before, during, and after the operation. Efforts are being made to change or alleviate problem areas prior to future recovery operations.

LOCICHEED ANICRAFT CORPORATION

SECTION 9

i i

1

ŀ

ł

LMSD-446240-56

MISSILE and SPACE DIVISION

SECTION 9 GROUND SYSTEMS

Ground system elements satisfactorily accomplished prelaunch-, launch-, ascent-, orbit-, and recovery-operation functions. Tracking and telemetry data obtained by the tracking stations during the operation were of good quality for online evaluation, orbital computations, and postflight analysis.

SATELLITE TEST CENTER (STC)

System operations were satisfactorily conducted by the Satellite Test Center (STC). Direction of launch, orbit, and recovery operations by the system test director was efficient.

Although intermittent outages of the communications network were experienced during the operation (Table 9-1), the network was expeditiously restored to operation, and no serious loss of time or information resulted.

PALO ALTO COMPUTER CENTER (PACC)

The Palo Alto Computer Center (PACC) functioned successfully during all phases of the operation. Nominal acquisition messages were sent to tracking stations for system-run checks, and at T - 48 hours, the first impact prediction was sent. From T - 6 to T - 3 hours, system readiness runs were made and all systems were evaluated as ready. Difficulties were experienced in sending KTS data tapes (probably due to line disturbances) but were cleared up before launch time.

Launch data were received quickly from the Vanienberg Tracking Station (VTS) and the Point Mugu Tracking Station (MTS) and were put immediately into the computer. MTS radar data were used for first-pass predictions based on 29 data points. MTS obtained very accurate data with a

9-1

SECRET

LOCIGHED AIRCRAFT CORPORATION

Table 9-1

COMMUNICATIONS PROBLEMS

DATE	TIME (FDT)	PROBLEMS
8-17	0121	V18 Doppler equipment inoperative for estimated two. hours
8-17	0131	VIS acquisition-programmer equipment marginal to your for estimated four hours
8-17	1615	VIS Doppler equipment inoperative
8-17		WV-2 aircraft at MHS single-sideband equipment inoper- ative for the operation; AN and CW to be substituted
8-18	0080-0053	New Boston 60-wan teletype No. 10336 picking up characters
8-18	0980	VIS redar had jitter in scope visual display for esti- meted one hour
8-18	0652	WV-2 aircraft at EES single sideband would not operate in flight
8-18	0928	VOC-STC 10750 data-link voice line had steady audio ring in data position. The ringing stopped when voice position was selected; data position was then reselected and 100-wyn checkout repeated
8-18	0931-0934	ETS 100-wym teletype inoperative (running open)
8-18	0931.	VES reported SEC's hotline level was low
8-18	1030	ME-STC weak and distorted with echo on hotline in either direction
818	1032	KNS had malfunctioning transmitter distributor, believed to be on the 100 wgm
8-18	1035	VIE VERIOR? acquisition programmer evaluated as oper- ative, but 15 Resves computer data words were dropped near the tage leader
8-18	1704	VOC impressed a squeel on the hotline due to the tape- recorder sensitivity set too high. Problem was promptly restified

LOCKHEED AIRCRAFT CORPORATION

9-2 SECRET

LMSD-446240-56

Quantity

20

1

6

1

1

2

69

DISTRIBUTION

Addressee

Commander Air Force Ballistic Missile Division Attention: WDAT Air Force Unit Post Office Los Angeles 45, California

Air Force Plant Representative (SMAMA) Lockheed Aircraft Corporation Missiles and Space Division P. O. Box 504 Sunnyvale, California

6594th Test Wing (Satellite) (ARDC) Attention: TWRAT Satellite Test Center Building 171, Plant 1 Sunnyvale, California

AFBMD Field Office Attention, Lt. Col. W. F. Heisler Vandenberg AFB, California

Commander Pacific Missile Range Attention: DCOS-AF Col. S. G. Curtis USN Missile Test Center Point Mugu, California

D. McCallum Douglas Aircraft Company Space Systems (Systems Test) 3000 Ocean Park Boulevard Santa Monica, California

LMSD Organisations

Total 100

LOCKHEED AIRCRAFT CORPORATION

Produced by Satellite Systems Publications and Services (61-62)

LOCKHEED AIRCRAFT CORPORATION

Table 9-1 (Continued)

DATE	TIDE (PDT)	PROBLEMS
8-18	1105	STC read MIS low but tolerable; VIS read MIS loud and clear; VIS read STC "low but readable"; MIS read STC "low and in a berrel"; Telephone Company (TMICO) notified
8-18	1125-1200	THECO had intermittent 1000-cycle tone on GF6344 VOO-SIU hotling. Impossible to check liftoff tone under these conditions. THECO notified, replied "it was up at San Jose". VOO-SIU hotling lost due to the 1000-cycle tone. VOC sent THE to SIC request- ing THECO to stay off the line
8-18	1200	VCO-STC hotline tolerable both directions, with party receiving reporting the transmitting party with a slight barrel sound
8-18	1233	New Hoston acquisition-programmer equipment inoperative
8-18	1249	Station interference on single sideband between VCC and downrange telemetry ship; believed caused by WV-2 at EMS. Trouble ceased after second admonition from VCC
8-18	8030-0000	Elekan, Havaii, to SEC 10315- 60-wyn teletype out
8-19	0315-0515	Eichem, Hennii, 10315-A 60-wym teletype running open
8-19	0440-0600	Ens 10321 60-was teletype garbled
8-19	During Recovery	BOA unable to contact test directory by designated
8-22	1320-1324	Hickma, Hawaii, 10315-A 60-wym teletype running open.

root-mean-square (rms) deviation of 0.72 mile. Based upon launch data, a period of 93.8 minutes was predicted, then revised to 94.5 minutes on the basis of Pass 1 data. This error in orbit period has been attributed to a refraction effect caused by a temperature inversion. This effect caused the radar to give higher elevation angles and longer ranges as the actual elevation angle decreased below 15 degrees. A study is now being conducted on the magnitude-of-error that temperature inversions will introduce.

Predictions and acquisition messages were sent to the tracking stations from 50 to 60 minutes prior to station acquisition. Figure 9-1 shows the error in

LOCKHEED AIRCRAFT CORPORATION

SECRET

9-3-

the predicted time-of-crossing of each station's latitude. The error in Passes 8 and 15 was probable due to the accumulated error in the passes that were not tracked.

• The time of D-timer start and reset monitor ON was obtained over the hotline from KTS. The D-timer start was seven seconds later than predicted. TLM-18 re-entry data from HTS were of no value due to complete lack of lockon.

Impact predictions were given following Passes 2, 8, 9, 10, 15, and 16. The prediction after Pass 10 was based on the condition of no subsequent timer reset. The final prediction was made after Pass 16, using all available information.

The predicted impact point was about 7 degrees north of the actual point. The error in the predicted point is believed to have been primarily caused by incorrect satellite attitude at the time of capsule ejection.

SYSTEM OPERATION ANALYSIS (SOA)

The System Operation Analysis (SOA) Section areas in the STC and at the PACC were manned at T - 1 hours. At this time, the operational areas were readied for launch activities. Communications with the PACC, the Operation Support area, and the test directors were checked for readiness.

Times of events, Command 5 and 6, and tracking cata were displayed during launch and compared with nominal values. All data indicated a nearly nominal ascent and successful orbital injection.

Using predicted Pass 1 data, the first-pass time command nonogram was prepared for the test director. Required timer correction was determined to be increase and Step 2, and reset command at reset latitude. With the satellite apparently deaf to Tone A on Pass 1, a timer command sequence to be sent on Pass 2 was prepared to properly adjust the timer for Passes 9 and 10. This sequence required decreasing the orbital timer period to the

LOCICHEED AIRCEAFT CORPORATION

SECRET

9-5

LMSD-446240-56

, lowest setting, at which time the timer recycles to the top position, and then down from the top step position to a timer switch position of 32 (5717 seconds). This would have correctly positioned the "Plates ON" time during Passes 9 and 10, and also laft 2 steps (decrease) for further refinement as required. This plan would have been used on Pass 2, if KTS had not been successful in sending Commands 1 and 3.

Passes 1 and 2 and the nighttime passes were monitored. Updated orbital parameters and impact predictions were issued to the STC Program Information Center and the Operations Support areas, as well as acquisition messages to the tracking stations.

Because of the Tone A command problem, it was recommended by SOA that the timer be reset on Pass 15 so that further adjustment on Pass 16 would not be required. This procedure was followed, with an alternate method in case of a problem. The reset command was issued, held, and verified by KTS as directed. New impact predictions were issued based on the latest sphemeris information.

Recovery Pass 17 was monitored in the STC, PACC, and at the HCC. Ship sightings of the VHF beacon were reported and plotted. Almost immediately following, a number of bearings from the C-119 aircraft were reported. The USS <u>Dalton Victory</u> bearings then became approximately stationary at 015 degrees true azimuth. C-119's 5, 7, and 9 gave intersecting bearings and a 55-second contact from South Point on a bearing at 250 degrees true azimuth intersected with both the C-119 and the USS Dalton Victory bearings.

Based on the ship and C-119 bearings being reported, SOA personnal attempted to inform the test director of the approximate location so HTS and Barking Sands might train their antennas. Because of telephone line difficulties, this vital information had to be handcarried to the Operation Support area. The asimuth from HTS was further refined to 215 degrees, but a connection to the director was again impossible. Apparently the designated telephone was off the hook or busy. It was believed that if HTS TLM-18 repositioning data had reached Hawaii, a bearing fix would have been attained.

LOCKHEED AIRCRAFT CORPORATION

LMSD-446240-56

An impact point of 16 degrees, 52 minutes north latitude and 161 degrees, 52 minutes west longitude was generated but never issued due to the announcement of air recovery by C-119 Number 7. The announcement made the SOA prediction appear completely in error until it was announced that C-119 Number 9 instead of Number 7 had actually recovered. The final recovery location was reported to be 17 degrees, 6 minutes north, approximately 30 nautical miles from the SOA triangulation impact point.

HUMAN FACTORS

Communications and control performance were generally good. Stations were requested to compile sufficient information and formulate procedures prior to the operation. As a result, reporting and communications were excellent.

The inability of KTS to transmit and verify Command 1 was correctly diagnosed before Pass 2. KTS had initially adjusted the command-tone deviations to specifications, but after the first pass, a recheck disclosed an outof-specification condition. Remedial procedures were established and twice sent to KTS before ETA minus 5 minutes, Pass 2. HTS also experienced Tone A difficulties on Pass 10, and thus was directed to increase deviation of the command tone by 0.5 microsecond, which allowed the station to send two verified Command 1's. KTS was directed to transmit the vital Pass 15 reset command. To assure verification, the station was instructed to begin sending reset 30 seconds before nominal reset time.

When the telemetered control-gas pressure was first observed to be low, STC requested real-time readout by all tracking stations of control-gas pressure. The stations made prompt reports of this item as the readouts became available.

TRACKING STATIONS

Tracking station performance was satisfactory. VERLORT radar tracking was successfully accomplished on programmed passes, and telemetry

LOCKHEED AIRCRAFT CORPORATION

SECRET

monitored all instrumented satellite functions. The general quality of the space-position data is indicated in Figure 9-2. Total number of data points transmitted to the PACC are compared with the usable number of points. VERLORT and telemetry coverage during launch and ascent is presented in Figure 9-3.

Orbital VERLORT tracking was satisfactorily accomplished, but difficulty was experienced in getting Commands 1 and 3 to the satellite. These commands contain the Tone A modulation. Of 35 total commands sent between Passes 1 and 17, only 18 were verified by the satellite. (Table 5-6.) Since several stations experienced command difficulties, radar-beacon malfunction is considered a contributing factor. Telemetry reception by the tracking stations during orbit was satisfactory except during the recovery pass, when no contact with the capsule telemetry (1.2-watt) transmitter was made. Orbital contacts, with durations of track for each station, are shown in the Orbital Contact Summary, Table 3-4. Near real-time data evaluation was made possible by telemetry reception at the Sunnyvale facility. Holloman AFB, New Mexico, and the recently activated station at New Boston (NBTS), New Hampshire, also provided tracking information. Four tracking-light sightings were reported by Smithsonian South African stations. Satisfactory contact with the capsule VHF beacca was made during the recovery operation (Fig. 8-2) but none with the capsule telemetry. Further investigation has shown that the transmitter was not activated (see Telemetry and Instrumentation).

Vandenberg Tracking Station (VTS)

Track station operations were successfully carried out during launch and succeeding orbital operations. Active VERLORT tracking was maintained until T + 165 seconds, when the radar went passive as planned.

The VERLORT then tracked on MTS's return until T + 516 seconds, when fade occurred at an elevation of 3.9 degrees and azimuth of 173.4 degrees. A beacon "countdown" of 20 percent was reached prior to launch. During Task 4, instability of the modulator and beacon-coder triggers was noted on

LOCKHED AIRCRAFT CORPORATION

SECRET

9-8

LOCKHEED AIRCRAFT CORPORATION

the range scopes. A check of transmitted pulses out did not show instability and a check with the blockhouse confirmed this. The problem was traced to the VERLORT van and corrected. The system-time generator at the. VERLORT site was inoperative, and thus times recorded on the Brush recordings were invalid. Beacon countdown continued during launch and ascent, with peaks reaching 30 percent and averaging 5 to 10 percent. The countdown appeared to be caused by three search-type radars, scanning at a rate of about 11 seconds per revolution. Telemetry tracking and data acquisition was successfully carried out by both the TLM-18 and tri-helix antennas. Orbital contact was also achieved on Passes 1, 8, 9, 15, 16, and 24. The only command sent by VTS, a reset command on Pass 9, was not verified.

Point Mugu Tracking Station (MTS)

Performance of equipment and personnel was satisfactory during launch and subsequent orbital passes. Radar-beacon returns were received at T + 25 seconds, and automatic track was achieved soon thereafter. Contact was maintained until T + 500 seconds. Command 5 (D-timer hold) and Command 6 (velocity-to-be-gained) were successfully computed and transmitted for durations of 26.70 seconds and 13.20 seconds, respectively. Slight countdown was noted during track but caused no difficulty. Agena telemetry was acquired at T + 25 seconds by the tri-helix antenna and continued to be tracked until T + 460 seconds.

Orbital tracking was also successful on Passes 8, 9, 15, and 25. No orbital commands were transmitted. Slight countdown was observed during orbital passes.

Downrange Telemetry Ship (AG 161)

The downrange ship was on station and performed satisfactorily during launch operations. Telemetry contact was achieved at T + 251 seconds and lasted until T + 740 seconds. The ship provided positive verification of

9-11

SECRET

LOCICHEED AIRCRAFT CORFORATION

successful Agena reorientation (yaw-around), switchover of antennas from exit to orbit, and the plus 3.55-deg/min pitch rate.

Kodiak Tracking Station (KTS)

Acquisition of the VHF transmitters by KTS at 87.9 minutes after launch verified that orbital status had been achieved. A drift in command pulsemodulation deviation from 3 to 1.5 microseconds was discovered after Pass 1 and resulted in command difficulty on Pass 1, when increase and reset commands could not be verified. Readjustment of command pulse deviation to 2.75 microseconds on Pass 2 resulted in successful Tone A verification. On Pass 10, four out of five Command 1's were successful with Tone A modulation increased to 3.05 microseconds. A final reset command on Pass 15 adjusted the orbital timer for correct initiation of the retro sequence on Pass 17. The reset command was initiated 30 seconds before the actual reset latitude was reached. It was sent continuously, and KTS was instructed to make any changes in Tone A deviation necessary to obtain proper verification. No adjustment was necessary, however, since verification was achieved immediately. When the command was terminated, the timer was properly adjusted for recovery initiation on Pass 17.

Orbital telemetry acquisition was satisfactory. On Pass 17, no contact was made with the capsule telemetry signal, although a weak VHF-beacon contact was made.

Command exercises were carried out on postrecovery orbits. Satellite telemetry data were transmitted to Sunnyvale by telephone line after Passes 2 and 17. Data quality was very good, and sun-position indicator and horizon-scanner data proved to be of value in evaluating satellite attitude before the recovery pass. Personnel proficiency was excellent.

Hawaii Tracking Station (HTS)

Performance of the HTS during the operation was satisfactory. All scheduled contacts with satellite transmitting equipment were successfully made.

9-12 SECRET

LOCIGHEED AIRCRAFT CORPORATION

Difficulties were experienced on Passes 1 and 10 in obtaining verifications for commands containing Tone A. Four reset commands were sent in succession on Pass 10 without success, but after the modulation deviation was increased by an additional 0.5 microsecond, successful verification was achieved. During the recovery pass, HTS made contact with the capsule VHF beacon for a duration of 77 seconds.

Barking Sands

The recently activated tracking station at Barking Sands on the island of Kausi was utilized to track capsule signals during the recovery pass, although contact was made with the satellite telemetry signal during orbit operations as well. No contact with the capsule VHF beacon was made.

South Point

The capsule VHF beacon was acquired for a duration of 77 seconds at a bearing of 250 degrees during Pass 17.

Christmas Island

Because of the southerly location of this station, no capsule contact was accomplished.

WV-2 Telemetry Aircraft

A WV-2 aircraft equipped for telemetry reception was positioned below the capsule-separation point (approximately 50 degrees North latitude, 170 degrees West longitude) to receive and record capsule telemetry data. No capsule telemetry contact was made although the VHF beacon was satisfactorily acquired.

LOCICHEED AIRCRAFT CORFORATION

GROUND SUPPORT EQUIPMENT (GSE)

Blockhouse

Performance of the blockhouse GSE was satisfactory except for the propellanttanking problem mentioned below.

Agens

During Countdown Task 5, the lanyard to the fuel-fill umbilical disconnect was found to be too short and a longer lanyard had to be made. Apparent damage to a pneumatic hardline in the umbilical mast was noticed during Task 9 of the countdown. Pad personnel inspected the hardline which apparently had been struck by a hammer and found it mechanically sound.

When fuel flow was turned on at the blockhouse during Task 14 (propellant tanking), flow was not recorded at the blockhouse meters. At first, it was thought that the flowmeters were inoperative, but investigation revealed that there was no flow. The fuel-tank flow valve was checked and found to be working properly; however, the interflow valve on the umbilical was stuck in the closed position. The valve was freed by simultaneous application of current to the valve solenoid and tapping the valve. Even after freeing the valve, the fuel flow could not be started from the blockhouse and had to be turned on at the fuel truck on the pad. No reason for this lack of blockhouse control is available at this time.

Thor.

A hydraulic power unit malfunction was experienced during Task 3 of the countdown. In addition, the pad water-deluge system was inadvertently activated during Task 8 of countdown. This caused delay while GSE at the pad was inspected for possible damage. No reason for this malfunction is available at this time.

9-14

SECRET

LOCKHEED AIRCRAFT CORPORATION

-SECRET-

Pad Damage

Pad damage was minor and confined to the normally expendable items such as hydraulic flex lines, air-conditioning ducts, and electrical cables.

LOCKHEED AIRCRAFT CORPORATION

9-15

SECTION 10 OPERATIONS SUPPORT

LMSD-446240-56

SECTION 10 OPERATIONS SUPPORT

Adequate support was provided by the following participating agencies:

6594th Test Wing lat Missile Division Alaskan Air Command Spacetrack Lookout Mountain Laboratories Pacific Missile Range Flight Test Working Group, VAFB Douglas Aircraft Company LMSD Data Services LMSD Palo Alto Computer Center 6594th Recovery Control Group.

The 10-hour Vandenberg data shipment was delayed because of weather conditions at VAFB. It was delivered by car to Paso Robles where it was picked up by the courier aircraft.

The capsule containing original data from the telemetry ship, USS <u>King</u> <u>County</u>, was dropped in an attempted pickup, but a second capsule containing duplicate data was successfully picked up. The first capsule was later recovered by the telemetry ship.

LMSD Data Services and Modification and Checkout receiving stations provided early launch and orbit data. Part of Pass 2 and Pass 17 data from KTS were transmitted by telephone line, permitting early evaluation of orbit and re-entry events.

For the first time, an aerial pickup of data from the USS <u>Dalton Victory</u> was attempted and accomplished. Pickup was made by a Hawaiian-based C-119 aircraft.

SECRET

LOCICHINED AIRCRAFT CORPORATION

WHILES and SPACE DIVISION

7