SUBJECT: Recovery Requirements

To: Commander
Air Research and Development Command
United States Air Force
Andrews Air Force Base
Washington 28, D. C.

1. Reference your letter (Confidential), RDX-AB, above subject, dated 21 December 1958, the following information is provided on recovery support requirements of the Air Force Ballistic Missile Divisions weapon systems operations within the foreseeable future:

a. The WSM-1A and W467A-1 copper re-entry vehicle development programs require recovery of data capsules; the WSM-1B, W467A-2 and W5066A-14 identification re-entry vehicle programs require recovery of re-entry vehicles and data capsules;

b. Geographical areas involved: Atlantic Missile Range for all four (4) weapon systems; probably also the Pacific Missile Range for WSM-1B and/or Minuteman.

c. Recovery capability is required now in the Atlantic Missile Range and will continue to be required there for an indefinite period. No requirements have been defined as yet for the Pacific Missile Range.

d. Present and visualized requirements involve such recovery operations as the following:

(1) Data capsules. These are presently being recovered in the Atlantic Missile Range, weigh about one hundred (100) pounds each and are spheres about eighteen (18) inches in diameter.

Aircraft type re-entry vehicles. Both scaled and
Minuteman type, these will be rubber-coated cylinders approximately six feet long and seven hundred (700) pounds (for Atlas Phase 11 experimental vehicles) to about 1,000 to 5,000 pounds (3,000 lbs) (for prototype Atlas re-entry vehicles).
Recovery of still heavier and larger re-entry capsules may ultimately be required in support of missile and/or space programs.

Data Capsules: These are presently visualized as cylindrical objects about thirty-six (36) inches long with a diameter of eighteen (18) inches and a weight of one hundred (100) pounds.

(2) Recovery will take place from water in all instances.

(3) Recovered items will have to be returned to launch sites from distances of at least fifty-five hundred (5500) nautical miles.

(4) Time will be extremely important in return of recovered items since establishment of design validity, the need for additional flights, product improvement, space system development and rapid advancement of the state-of-the-art will depend upon the earliest evaluation of the data stored in the recovered items and/or laboratory examination of the items itself.

(5) These recovery requirements have necessitated the development of specialized recovery "packages" which include de-activation parachutes, flotation balloons and such locator aids as radio beacon, flashing lights, ozone bombs and sea marker dye. Recovery operations may considerably be improved by the use of special electromagnet, locator and diving equipment (and perhaps handicapped by fragility of the recovered items, due to ablation loads). The development of an all-weather recovery capability would, of course, also be helpful. We do not anticipate that any disarming operations will be required.

(6) We visualize somewhat different requirements for recovery in support of space systems development:

a. W21172.

b. Recovery will be required Southeast of Hawaii.

c. The recovery capability is required in January 1959.

d. Nature of recovery requirement:

(1) Bio-medicinal capsules weighing one hundred twenty pounds (120 lbs) and sixty pounds (60 lbs).

(2) All recovery is planned for these capsules.

(3) They will be returned about thirty-five hundred (3500) miles to the delivery points.
(4) The nature of experiments involving bio-subjects demands that they be returned to the delivery point for analysis as soon as possible.

(5) The bio-subject is relatively fragile and care must be taken to avoid excessively rough treatment.

- Recovery requirements for this weapon system extend through FY 1960. Seventeen (17) recovery attempts will be made during this time period. The 593d Test Squadron (Special) new stationed at Edwards Air Force Base has been assigned responsibility for aerial recovery of test capsules.

2. a. Man-in-space Program.

b. Recovery will be required in the ocean area adjacent to the United States, near the Air Force Missile Test Center, and possibly in the central land area of the United States.

c. The recovery capability is required in the last half of Calendar Year 1960.

4. a. Nature of recovery requirement:

 (1) Four (4) unmanned and two (2) manned test vehicles each weighing approximately twenty-three hundred (2300) pounds, about nine (9) feet wide at the large diameter and seven (7) feet long.

 (2) Primarily water recovery, with a possible desire for one land recovery.

 (3) The recovered object must be returned about two hundred (200) miles to the delivery point.

 (4) For unmanned vehicles, about twenty-four (24) hours is satisfactory. For manned vehicles, the return to delivery point must obviously be as soon as possible, and not to exceed twelve (12) hours.

 (5) Special considerations are obviously needed to avoid exceeding environmental tolerances of the man in the vehicle.

4. a. Recoverable mapping satellite.

b. Recovery will be in the central land area of the United States.

c. The capability for recovery is required in the second quarter of Calendar Year 1960.

4. d. Nature of recovery requirement:

 (1) The recovery is required for the test vehicles themselves.

 (2) The primary method of recovery is by parachute.

 (3) The return to delivery point must be made within twenty-four (24) hours.

 (4) The capability for aerial recovery is required for test vehicles in the ocean area adjacent to the United States.
Four (4) vehicles, each weighing approximately fifteen hundred (1500) pounds, with dimensions of six (6) feet in diameter and eight (8) feet in length.

(2) Land recovery is planned, with possible water recovery.

(3) Return distance of three hundred (300) to four hundred (400) nautical miles for the payload and about eighteen hundred (1800) miles for the re-entry vehicle itself.

(4) Return within about twenty-four (24) hours will be desired.

(5) No special considerations.

5. The above “payload recovery” projects should generate steadily increasing requirements for size of the recovered object, and for frequency of recovery as more types of manned missions are undertaken. However, one major advance is needed to make sustained space operations economically feasible; this is the recovery, eventually for routine re-use, of the first-stage boosters. Progress towards this goal may be expected to include three steps:

a. Unmanned parachute recovery of “small” (up to ICBM-size) first stages, to develop recovery techniques and investigate re-use potentials. The primary recovery area would be in the South Atlantic, with return of the entire stage to the U.S. for analysis. Return should be reasonably expeditious, consistent with the system development schedule adopted (fifty (50) feet long, ten thousand (10,000) pounds.)

b. Unmanned parachute recovery of “large” (million-pound thrust and over; thirty to fifty thousand (30-50,000) pounds, sixty to eighty (60-80) feet long) first stages, to develop recovery system and validate re-use capabilities as desired. Recovery area would be in the South Atlantic, with return of the entire stage to the U.S. for analysis and possible partial re-use. Return should be reasonably expeditious, depending upon the development schedule.

c. Manned, maneuverable recovery of large space boosters to develop recovery techniques and systems leading towards booster reuse for sustained space operations (satellite stations, staged interplanetary explorations, ion or nuclear propulsion testing). Land recovery (conventional landing or parachute) in a selected area contiguous to the South Atlantic. Emergency recovery of the pilot would be required along the planned trajectory. The recovered space booster would be returned to the U.S. for analysis, IRAN, and re-use.

6. The time schedule for these requirements depends upon national decisions as to the types proposed to place on space achievements.
Early data are available on 1962-1963 for the 'small' parachute recoveries, 1964-1965 for the 'large' parachute recoveries, and 1966-1967 for the airship parachute recoveries.

7. As space programs advance, it is expected that additional requirements for recovery will be generated. These requirements will be of the same general nature as those described above, with increasing emphasis on 'very large' re-entry vehicles. The extent of the recovery area will be increased, but they should still be centered in the same general locations (i.e., the Atlantic Missile Test Range, central United States, and the Pacific Ocean area from California to southwest of Hawaii). The weights of space re-entry vehicles which will require recovery can be expected to increase to approximately ten thousand (10,000) pounds, with a corresponding increase in dimensions.

RICHARD D. CURTIN
Colonel, USAF
Deputy Commander
Military Space Systems

R. A. SCORRIER
Major General, USAF
Commander

Copy furnished.
WDY 74048

WDY 31-34