The attached set of briefing charts is for your information and files.
The Crew Safety briefing was given to Col. W. D. Brady on 11 August 1964.

R. L. LaPorte
Director
Gemini B/Titan III Office
CREW SAFETY REVIEW

Aug. 11, 1969
CREW SAFETY

/ INTRODUCTION
/ ON PAD ABORT
/ IN-FLIGHT TO 35,000 FEET
/ IN-FLIGHT 35,000 FEET TO 70,000 FEET
/ BACK-UP GUIDANCE
/ EVALUATION CRITERIA
/ STATUS SUMMARY
/ CONCLUSION
EVALUATION OF SEAT EJECTION SYSTEM

/ USED ONLY DURING STAGE 0 FLIGHT REGIME
/ REMAINING BOOST PHASE NOT PERTINENT TO SEAT/TOWER SELECTION

REVIEW/STATUS/CONCLUSION TO DATE FOR STAGE 0 FLIGHT
TITAN III CREW SAFETY CONSIDERATIONS

- TITAN III abort environment more severe than GLV
 / higher TNT equivalence
 / thrust termination exhaust plumes in stage 0 flight
 / more short warning time malfunctions in initial burn stage
 - no redundant F/C - guidance system
 / staging of tunnel fairing

- Re-evaluation of Gemini A ejection seat escape mode required
 / comparison of new environment versus seat/suit/man capability

- May require escape tower
GLV - TIIIC CREW ESCAPE REQUIREMENTS COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>GLV</th>
<th>TIIIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability of Mission Failure During Initial Burn Stage</td>
<td>29×10^{-3}</td>
<td>33×10^{-3}</td>
</tr>
<tr>
<td>Overpressure Associated with Vehicle Break-Up</td>
<td></td>
<td>Approximately 50% higher than GLV</td>
</tr>
<tr>
<td>Fireball Associated with Vehicle Break-Up</td>
<td>610' Diameter</td>
<td>735' Diameter</td>
</tr>
<tr>
<td>Thermal Environment After Thrust Termination But Prior to Break-Up</td>
<td>None</td>
<td>T.T. Exhaust Plumes Present</td>
</tr>
<tr>
<td>Malfunction Warning Time</td>
<td>Complete System Designed to Eliminate Malfunctions with Short Warning Time</td>
<td>Complete System Designed Assuming Automatic Escape System for Short Warning Time Malfunctions</td>
</tr>
<tr>
<td>Probability of Malfunction with Less Than 2 Seconds Between Detection and Break-Up</td>
<td>9×10^{-4}</td>
<td>25×10^{-4}</td>
</tr>
<tr>
<td>FAILURE MODE</td>
<td>FLIGHT PHASE</td>
<td>0</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------------</td>
<td>-----</td>
</tr>
<tr>
<td>LOW ENGINE THRUST, NO</td>
<td>1</td>
<td>4,500</td>
</tr>
<tr>
<td>THRUST OR PREMATURE S/D</td>
<td>22</td>
<td>10,000</td>
</tr>
<tr>
<td>VEHICLE UNSTABLE</td>
<td>3</td>
<td>850</td>
</tr>
<tr>
<td>THRUST VECTOR REMAINS ON NULL</td>
<td>4</td>
<td>3,400</td>
</tr>
<tr>
<td>HARD-OVER OR FAST ATTITUDE DIVERGENCE</td>
<td>5</td>
<td>5,800</td>
</tr>
<tr>
<td>SLOW ATTITUDE DIVERGENCE</td>
<td>6</td>
<td>7,300</td>
</tr>
<tr>
<td>COLLAPSE OR PUNCTURE OF PROPellant TANK</td>
<td>7</td>
<td>260</td>
</tr>
<tr>
<td>STRUCTURAL BREAK-UP OR EXPLOSION</td>
<td>8</td>
<td>----</td>
</tr>
<tr>
<td>FAILURE TO SEPARATE</td>
<td>9</td>
<td>----</td>
</tr>
<tr>
<td>Payload</td>
<td>10</td>
<td>----</td>
</tr>
<tr>
<td>MINI-ENGINE Fails to SHUT-DOWN</td>
<td>11</td>
<td>210</td>
</tr>
<tr>
<td>PREMATURE STAGING</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>LOSS OF BEACONS OR RADIO COMMAND LINK</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>FALSE ABORT</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>PREMATURE STAGE III</td>
<td>15</td>
<td>----</td>
</tr>
<tr>
<td>ENGINE START</td>
<td>16</td>
<td>----</td>
</tr>
<tr>
<td>TOTAL</td>
<td>17</td>
<td>33,000</td>
</tr>
</tbody>
</table>
VEHICLE SYSTEMS

- TITAN III C MDS BLOCK DIAGRAM

<table>
<thead>
<tr>
<th>Command Control Receivers</th>
<th>Engine Shutdown & Abort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank</td>
<td></td>
</tr>
<tr>
<td>Pressure Sensors</td>
<td>Under Pressure</td>
</tr>
<tr>
<td>Rate Sensors</td>
<td>Pitch, Yaw & Roll Rates</td>
</tr>
<tr>
<td>Hot Wire Sensors</td>
<td></td>
</tr>
<tr>
<td>Programmed Events</td>
<td></td>
</tr>
<tr>
<td>Guidance Discretes</td>
<td></td>
</tr>
<tr>
<td>MDS Logic</td>
<td></td>
</tr>
<tr>
<td>Stage III APS & IPS</td>
<td></td>
</tr>
<tr>
<td>MDS Logic Power</td>
<td></td>
</tr>
<tr>
<td>Spacecraft</td>
<td></td>
</tr>
<tr>
<td>Engine Controls</td>
<td></td>
</tr>
</tbody>
</table>
EJECTION SEAT CHARACTERISTICS

- MANUAL ABORT INITIATION BASED ON PARAMETRIC AND GO-NO-GO DISPLAYS
 - REQUIRED WARNING TIME
 / MAN DECISION TIME + .45 SECONDS
 - ASTRONAUT/SEAT SEPARATION TIME
 / MAN DECISION TIME +1.55 SECONDS
- NON-STABILIZED SEAT WITH POOR NATURAL STABILITY
- SEATS ARE USED ON PAD AND UP TO 35,000 FEET (MAY BE LOWERED)
ESCAPE TOWER

- **CHARACTERISTICS**
 - LAUNCH WEIGHT: 2,000 POUNDS
 - THRUST: 65,000 POUNDS
 - TOTAL IMPULSE: 75,000 LB-SEC
 - LENGTH: 15 FEET

- **REQUIRES DEVELOPMENT AND TEST PROGRAM**

- **REQUIRES MAJOR STRUCTURAL CHANGES TO GEMINI B**
 - POSSIBLE TOOLING CHANGES
 - STRUCTURAL TEST
EFFECT OF MANUAL SEAT ABORT ON PIBOL

/ PIBOL CANNOT BE UTILIZED DURING STAGE 0 FLIGHT
ON-RAD ABORT

FAILURE MODES
ABORT ENVIRONMENT
EFFECT UPON SEAT EJECTION SYSTEM
DATA NEEDED
SUMMARY
CONCLUSIONS
ON-PAD FAILURE MODES

/ TIP-OVER
 o PROBABILITY - 200/MILLION LAUNCHES
 o WARNING TIME
 / MINIMUM - 1.2 SECONDS (IMPACT WITH STAND)
 / MAXIMUM - 2.6 SECONDS (EXCEED ATTITUDE LIMITS FOR HATCH UP)

/ SINGLE THRUST VECTOR HARDOVER
 o PROBABILITY - 200/MILLION LAUNCHES
 / MINIMUM - 1.0 SECONDS (EXCEED ATTITUDE LIMITS FOR HATCH DOWN)
 / MAXIMUM - 3.2 SECONDS (EXCEED ATTITUDE LIMITS FOR HATCH UP)
ATTITUDE ANGLE CONSTRAINTS

/ ANGLE LIMIT, HATCHES DOWN
 / 5° MAXIMUM SAFE
/ ANGLE LIMITS, HATCHES UP
 / 11° FOR 560 FT. RANGE
 / 25° FOR 400 FT. RANGE
/ ASSUMES NO WIND
/ ASSUMES SEAT LEAVES RAIL AT INSTANT
 BOOSTER ATTAINS LIMITING ANGLE

MDS SIGNAL
/ P/Y RATE SENSOR AT 3.5°/SEC
/ ON PAD TIP OVER TRIPS MDS SIGNAL - 0.6 SEC
/ IN FLIGHT (LIFT OFF) TRIPS MDS SIGNAL - 1.0 SEC

VEHICLE ATTITUDE AT MDS TRIP
/ ON PAD - 1°
/ IN FLIGHT - 5°

CONCLUSION
/ ATTITUDE CONSTRAINT NOT GOVERNING
 FOR ON PAD TIP OVER
/ ANGLE CONSTRAINT CRITICAL FOR IN
 FLIGHT THRUST VECTOR HARD OVER
 WITH HATCHES DOWN
OVERPRESSURE VS RANGE AND TIME ON PAD EXPLOSION OF TITAN IIIC

- $t = 0.046 \text{ sec}$
- $t = 0.086 \text{ sec}$
- $t = 0.132 \text{ sec}$
- $t = 0.169 \text{ sec}$
- $t = 0.263 \text{ sec}$
- $t = 0.450 \text{ sec}$
- $t = 0.64 \text{ sec}$

RANGE FROM EXPLOSION - FEET

PEAK OVERPRESSURE - psi
ASTRONAUT AND FIREBALL RANGE VERSUS TIME

1. Astronaut abort at 2 seconds before detonation
2. Astronaut abort at detonation
3. 735 feet diameter fireball
4. Average fireball surface temp - 3000°F
5. Total heat to astronaut:
 - Case 1: 119 BTU/ft²
 - Case 2: 250 BTU/ft²
 (Allowable with suit - unknown)
 (Allowable bare skin - 15 BTU/ft²
 2nd degree flash burns)
6. Total heat to parachute:
 - Case 1: 82 BTU/ft²
 - Case 2: 130 BTU/ft²
 (Allowable BTU/ft²)
HEAT FLUX

\[
\text{HEAT FLUX ON ASTRONAUT} = \sigma T^4 \frac{r^2}{R} = 5.67 \times 10^{-12} \frac{\text{watt}}{\text{cm}^2 \text{oK}^4} \times (1870 \text{oK})^4 \times \frac{r^2}{R} = 61 \frac{\text{Btu}}{\text{ft}^2 \text{-Sec}} \frac{r^2}{R}
\]

where:

\[
\sigma = \frac{T}{T_a} B_v
\]

\[
T = \text{Fireball Surface Temp., (oK)}
\]

\[
T_a = \text{Ambient Temperature, (oK)}
\]

\[
B_v = \text{Unit Black Body Radiation,} \quad \frac{\text{watt}}{\text{cm}^2 \text{oK}^4}
\]

\[
r = \text{Fireball Radius, (ft)}
\]

\[
R = \text{Radial Distance, Center of Fireball to Astronaut, (ft)}
\]

* Meas. Data Aerojet @ 2:1 - 10 ft = 60 \(\frac{r^2}{R} \)
GEMINI ON-PAD ABORT TRAJECTORY ENVELOPE

NOTE: THE SPREAD OF THE TWO CURVES IS DUE TO THE POSSIBLE VARIATIONS IN ALL PARAMETERS INFLUENCING THE ABORT TRAJECTORY.

VECTOR DISTANCE FROM DETONATION

385 FT.

T = 2 SEC

500 FT., 550 FT.

T = 3 SEC

T = 3.5 SEC

PARACHUTE DEPLOYMENT

ASSUMED POINT OF DETONATION

HORIZONTAL DISTANCE, FT.

ALTITUDE, FT.
SECURITY FENCE
8'

TRAFFIC CONTROL HOUSE
3σ-EDA FOOTPRINT
NO WIND-TYP.

LANDING FOOTPRINT
AVERAGE WIND VELOCITY (13 MPH)

8' SECURITY FENCE
EFFECT OF BLAST OVER PRESSURE ON PARACHUTE

- PARACHUTE PRIOR TO BLAST OVERPRESSURE (C-9 CANOPY)

- PARACHUTE 0.023 SECONDS AFTER SHOCK WAVE STRIKES CANOPY

- RESULTS OF CANOPY DISTORTION
 / POSSIBLE PARACHUTE COLLAPSE DUE TO RAPID, NON-UNIFORM CANOPY DISTORTION
 / POSSIBLE PARACHUTE TANGLE DUE TO RAPID SUSPENSION LINE LOAD RELAXATION
 / POSSIBLE FABRIC TEARING DUE TO IMPACT LOADING

- 587 Feet to Pad
POSSIBLE SOLUTIONS

- PARACHUTE DESIGN
 - Add pressurized members to present canopy
 - Stiffen canopy to avoid collapse
 - Provide geometric porosity on canopy to permit rapid equalization of blast pressure effects
 - Use ring slot chute
 - Requires drop test program
ABORT LEAD TIME

<table>
<thead>
<tr>
<th>ABORT TIME - SEC (FROM DETONATION)</th>
<th>ASTRONAUT DISTANCE AT DETONATION</th>
<th>RESULTING ENVIRONMENT</th>
<th>POSSIBLE EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>T > -15</td>
<td>600 - 800 FT. (ON GROUND)</td>
<td>O'PRESS 91.1 - 1.5 PSI</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIREBALL (370 FT. RADIUS)</td>
<td>NONE</td>
</tr>
<tr>
<td>-15 SEC > T > -3.5</td>
<td>550 - 800 FT. (PARACHUTE OPEN)</td>
<td>O'PRESS (1.1 - 1.9 PSI)</td>
<td>PARACHUTE COLLAPSE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIREBALL (370 FT. RADIUS)</td>
<td>PARACHUTE BURN?</td>
</tr>
<tr>
<td>-3.5 SEC > T > -2</td>
<td>380 - 550 FT.</td>
<td>O'PRESS (1.9 - 3.4 PSI)</td>
<td>EARDRUM RUPTURE?</td>
</tr>
<tr>
<td>-2 SEC > T > 0</td>
<td>60 - 380 FT.</td>
<td>O'PRESS (3.4 - 200 PSI)</td>
<td>50% LETHAL</td>
</tr>
</tbody>
</table>

- SAFE ABORT LEAD TIME FROM DETONATION IS:
 - 2 - 3.5 SEC.
 - < 15 SEC.
DATA NEEDED

/ SUIT CAPABILITY
/ FRAGMENTATION
/ TOXICITY
SUMMARY

- On-pad failure probabilities are low
 \(\approx 400/\text{million launches} \)

- Additional data needed
 - Abort environment
 - Suit capability
 - Functional reliability of seats

- Landing footprint sensitive to wind velocity and direction

- Abort initiation time window narrow
 \(\approx 2 - 3.5 \text{ seconds prior to detonation} \)

- Reliability of seat system has to be factored in to determine crew fatality rate
CONCLUSIONS

/ SEAT EJECTION ABORT FOR ON-PAD FAILURE APPEARS EXTREMELY
HAZARDOUS
/ SEAT EJECTION SYSTEM SHOULD NOT BE DISCARDED ON BASIS OF ON-PAD ABORT

/ LOW FAILURE RATE - 400 FAILURES/MILLION LAUNCHES EXCLUDING
SEAT RELIABILITY
ABORT FOR IN-FLIGHT TO 35,000 FEET
CONSIDERATIONS

/ CRITICAL FAILURE MODES

/ WARNING TIMES

/ FAILURE ENVIRONMENT

/ SEAT EJECTION MODE
CRITICAL FAILURE MODES AND PROBABILITIES

- VEHICLE UNSTABLE
 - Probability ~5300 per million
- THRUST VECTOR REMAINS ON NULL
 - Probability ~450 per million
- HARD OVER OR FAST DIVERGENCE
 - Probability ~1800 per million
- COLLAPSE OR RUPTURE OF PROPELLANT TANKS
 - Probability ~3800 per million
- SLOW ATTITUDE DIVERGENCE
 - Probability ~3100 per million

TOTAL FAILURE PROBABILITY IN THIS FLIGHT REGIME

- Approximately 14,000 per million
WARNING TIMES

/ NO FIRM DATA TO DATE
/ MMC WILL HAVE BY 14 AUGUST
/ MDS
 o PITCH/YAW RATE SENSOR TRIPS AT 3.5°/SEC
/ VEHICLE BREAKS UP AT APPROXIMATELY 20°
 ANGLE OF ATTACK (MAX q)
/ ONE THRUST VECTOR HARD OVER
 o ATTITUDE ACCELERATION-APPROXIMATELY 10°/SEC²
 o WARNING TIME-1.7 SEC FROM MDS SIGNAL TO BREAK UP
/ TWO THRUST VECTOR HARD OVER
 o ATTITUDE ACCELERATION-APPROXIMATELY 20°/SEC²
 o WARNING TIME-.7 SEC FROM MDS SIGNAL TO BREAK UP
- VEHICLE MOTIONS DUE TO FAILURES
 / MMC HAS CALCULATED
- IN FLIGHT OVER PRESSURES
 / EXPLOSION DUE TO STRUCTURAL BREAK UP
 / EXPLOSION DUE TO COMMAND DESTRUCT
- IN FLIGHT FIREBALL
 / MMC WILL HAVE DATA BY 14 AUGUST
- FRAGMENTATION
 / VERY LITTLE DATA AVAILABLE
 / MMC WILL HAVE "BEST GUESS" BY 14 AUGUST
- THRUST TERMINATION PLUME
 / UTC DATA AVAILABLE
OVERPRESSURE FROM IN-FLIGHT EXPLOSION
(TYPICAL CURVE ~ 30,000 FEET ALTITUDE SHOWN)

1st EXPLOSION (STAGE 2 & 3)
(.02 - 1.0 SEC. AFTER STRUCTURAL BREAKUP)

2nd EXPLOSION (STAGE 1)
(1.0 - 1.1 SEC. AFTER STRUCTURAL BREAKUP)

3rd EXPLOSION (SRM)
(5.0 - 5.1 SEC. AFTER STRUCTURAL BREAKUP)

- THESE CURVES PERMIT EVALUATION OF SEAT-SUIT-MAN FOR IN-FLIGHT ABORTS

- DATA REQUIRED
 / SEAT TRAJECTORIES
 / WARNING TIMES
 / SEAT-SUIT-MAN CAPABILITY
SEAT EJECTION MODE

- SEAT EJECTION SEQUENCE AND WARNING TIMES CRITICAL
- MAC WILL HAVE SEAT TRAJECTORIES BY 14 AUGUST
- SEAT-SUIT-MAN CAPABILITY IN ENVIRONMENT UNKNOWN
- PARACHUTE CAPABILITY

- CURRENT INDICATIONS - NO PROBLEM
• SEAT EJECTION SEQUENCE

/ TIME 0 - PULL "D" RING
/ .24 SECS - HATCH OPEN
/ .39 SECS - SEAT AT END OF RAIL
/ .72 SECS - SUSTAINER ROCKET BURNOUT
/ 1.46 SECS - INITIATION OF SEAT-MAN SEPARATOR
/ 1.50 SECS - MAN FREE OF SEAT
/ VARIABLE - MAN FREE FALLS TO 5700 FEET
/ AT 5700 FT. - INITIATION OF PARACHUTE SYSTEM

• ADDITION OF INFLATABLE CREW TRANSFER TUNNEL ADDS .05 SECS TO TIME
INFLATABLE TUNNEL ABORT PROVISIONS

STOWED TUNNEL

INFLATED TUNNEL

GEMINI RE-ENTRY MODULE

Gemini Adapter

LABORATORY VEHICLE

- SEAT EJECTION MODE
 - SHAPED CHARGE CUTS TUNNEL AT A
 - SHAPED CHARGE CUTS FAIRING TIE STRAPS
 - WITH TIME DELAY AND TOLERANCES, \(\Delta t \) FOR TUNNEL RELEASE \(\approx 0.05 \) SECONDS
 - HATCH IS FREE TO OPEN AFTER TUNNEL AND TIE STRAP ARE CUT

- CAPSULE ABORT MODE USING RETRO MOTORS
 - SHAPED CHARGE CUTS TUNNEL AT B
 - SHAPED CHARGE CUTS FAIRING TIE STRAPS
 - GEMINI ADAPTER/LAB VEHICLE SEPARATION BY SHAPED CHARGE
 - TIME DELAY INSIGNIFICANT
 - IF SEAT EJECTION IS SUBSEQUENTLY USED, ABOVE SEQUENCE FOLLOWS
SUMMARY

/ FAILURE ENVIRONMENT DATA AVAILABLE ON 14 AUGUST
/ SEAT TRAJECTORIES AVAILABLE ON 14 AUGUST
/ WILL PERMIT COMPARING TRAJECTORY TIME HISTORIES
 WITH ENVIRONMENT TIME HISTORIES AT THAT TIME
/ LACK OF SEAT-SUIT-MAN CAPABILITY DATA WILL NOT
 PERMIT CLEAR DECISION
- TENTATIVE CONCLUSION
 - WARNING TIMES VERY CRITICAL
 - CAN NOT HANDLE TWO THRUST VECTOR HARD OVER FAILURES
- LOW PROBABILITY
ABORT FOR IN-FLIGHT

35,000 FEET - 70,000 FEET
CRITICAL ABORT ALTITUDE (35,000 - 70,000 FEET)

- EJECTION SEAT MODE CANNOT BE USED ABOVE 35,000 FEET
- PRESENT SPACECRAFT ESCAPE MODE CANNOT BE USED BELOW 70,000 FEET

TITAN IIIC FAILURE RATE
- 8 FAILURES/1,000 LAUNCHES

CONCLUSION
- NO SAFE ESCAPE METHOD IN THIS CRITICAL ALTITUDE RANGE
- INVESTIGATE ALTERNATE ESCAPE MODES
 - LOWER SPACECRAFT ALTITUDE ABORT CAPABILITY TO REDUCE RISK
SEPARATION DISTANCE BETWEEN GEMINI/TITAN III C AT RETROGRADE MOTOR BURNOUT

NEGATIVE SIGN DENOTES NO SEPARATION AEROSPACE CALCULATIONS

TWO PORT THRUST TERMINATION

TIME FOR SEPARATION INITIATION (SECONDS)
PRESENT AEROSPACE ABORT STUDIES

- ADDITIONAL THRUST REQUIRED TO ABORT SPACECRAFT SAFELY
 (WITHOUT ESCAPE TOWER)

- CASES CONSIDERED
 / ABORT FROM ON-PAD UP TO 70,000 FEET USING SPACECRAFT ONLY (CASE I)
 / ABORT WITH SPACECRAFT FROM 35,000 FEET AND HIGHER (CASE II)
 / SAME AS ABOVE AND COMPLEMENTING WITH SEAT EJECTION (CASE III)
 / WHEN MC DATA IS AVAILABLE, THE STUDY WILL INCLUDE CONSIDERATION OF
 BOOSTER FAILURE ENVIRONMENT
 / DETERMINE RETROGRADE AND RE-ENTRY ABORT REQUIREMENTS FOR
 ORBITAL ALTITUDE = 250 N. M.

- COMPLETION
 / 15 SEPTEMBER 1964
SPACECRAFT (S/C) ESCAPE MODE

- **CASE I (ON-PAD THROUGH 70,000 FEET)**
 - Study Output
 - Separation distance between Gemini B and Titan IIIC
 - Abort propulsion required
 - Spacecraft dynamic characteristics after abort
 - Determine whether S/C main parachute will collapse
 - Modifications required to S/C

- **CASE II (35,000 FEET AND HIGHER)**
 - Study Output
 - Similar to Case I above

- **CASE III (S/C + SEAT EJECTION)**
 - Study Output
 - Similar to Case I and Case II above with additional investigation of using ejection seats after S/C free falls
BACK UP GUIDANCE

- IMPROVES G/FC RELIABILITY FROM .938 TO .952
- AEROSPACE STUDY TO EVALUATE ROLE OF BACK UP GUIDANCE
- COMPLETION - 15 OCTOBER 1964
STAGE 0 FLIGHT CONTROL/GUIDANCE REDUNDANCY DATA

FLIGHT CONTROL/GUIDANCE FAILURE MODE PROBABILITY

- TOTAL - 20/1000 LAUNCHES
 - ON-PAD - .2/1000 LAUNCHES
 - IN-FLIGHT TO 35,000 FT. - 11/1000 LAUNCHES
 - IN-FLIGHT - 35,000 TO 70,000 FT. - 5/1000 LAUNCHES

REEDUNDANT FLIGHT CONTROL/GUIDANCE FAILURE MODE PROBABILITY

- TOTAL - ≈ 4/1000 LAUNCHES
 - ON-PAD - NEGLIGIBLE
 - IN-FLIGHT TO 35,000 FT. - ≈ .1/1000 LAUNCHES
 - IN-FLIGHT - 35,000 TO 70,000 FT. - ≈ .025/1000 LAUNCHES

CONCLUSIONS

- REDUNDANT FLIGHT CONTROL/GUIDANCE SYSTEM FOR TITAN IIIC (STAGE 0 ONLY) CAN REDUCE CREW RISK SIGNIFICANTLY
- AEROSPACE TO EVALUATE
- ABORT MODES TO BE EVALUATED (STAGE 0 FLIGHT)
 / PRESENT SEAT/S.C. SYSTEM
 / PRESENT SEAT/MODIFIED S/C SYSTEM
 - IMPROVED ABORT CAPABILITY OF S/C SYSTEM
 / TOWER
EVALUATION CRITERIA

/ STAGE 0 ABORT RISK
 / ON-PAD
 / IN-FLIGHT TO 35,000 FEET
 / IN-FLIGHT 35,000 FEET TO 70,000 FEET

/ PERFORMANCE
 / RELIABILITY
 / GREATER NUMBER OF FLIGHTS

/ TECHNICAL RISK

/ DEVELOPMENT AND TEST TIME

/ ADDITIONAL COST
STATUS SUMMARY

COMPLETED AEROSPACE STUDIES

- "GEMINI/TITAN IIIC ON-PAD ABORT SAFETY ANALYSIS"
 TOR-269(4107-15)-1
- "EFFECT OF HARDOVER MALFUNCTIONS IN TITAN III ON MOL"
 TOR-469(5107-15)-1
- PARACHUTE COLLAPSE ANALYSIS

AEROSPACE STUDIES UNDERWAY

- UTILIZE S/C ABORT AT 35,000 FEET AND ABOVE
 COMPLETE - 15 SEPTEMBER 1964
- BACK-UP GUIDANCE
 COMPLETE - 15 OCTOBER 1964

AEROSPACE/MC/MAC MEETING ON 14 AUGUST 1964 IN DENVER

MARTIN TO PROVIDE INTERIM REPORT ON ABORT ENVIRONMENT
14 AUGUST 1964

- SHOULD PROVIDE REQUIRED ENVIRONMENT DATA TO EVALUATE
 SEAT SYSTEM
 VEHICLE RATES/OVERPRESSURE CURVES ARE AVAILABLE

MAC TO PROVIDE IN-FLIGHT SEAT TRAJECTORIES AT 14 AUGUST 1964
MEETING

- COMBINED WITH MARTIN DATA TO EVALUATE SEATS FOR
 IN-FLIGHT USE

SSD OBTAINING SEAT/SUIT/MAN CAPABILITY DATA FROM NASA

SSD/AEROSPACE EVALUATION CRITERIA AND WEIGHTING FACTORS
- UNDER REVIEW
CONCLUSIONS

ON-PAD ABORT EXTREMELY HAZARDOUS, BUT HAS LOW PROBABILITY OF OCCURRENCE

FATALITY RATE IS AT LEAST 8 CREWS/1,000 LAUNCHES EXCLUDING S.C./SEAT RELIABILITY

DETERMINED BY TIME GAP BETWEEN SEAT ABORT CEILING AND S/C ABORT CAPABILITY - ≈ 25 SECONDS

BOTH SRM THRUST VECTOR HARDOVERS DO NOT PROVIDE ADEQUATE LEAD TIME FOR SEATS FOR IN-FLIGHT ABORT

LOW PROBABILITY OF OCCURRENCE

CONCENTRATE ON FOLLOWING FAILURE MODES

- SINGLE THRUST VECTOR HARDOVER
- THRUST VECTOR NULL

NEED MORE IN-FLIGHT ABORT DATA TO EVALUATE FULLY THE SEAT SYSTEM

SELECTION OF SEAT VERSUS TOWER DECISION CAN BE MADE

15 SEPTEMBER 1964