

Christine Grannas and Chuck Glover

12

Christine Grannas and Chuck Glover

CENTER FOR THE STUDY OF NATIONAL RECONNAISSANCE

MAY 2024

CENTER FOR THE STUDY OF NATIONAL RECONNAISSANCE

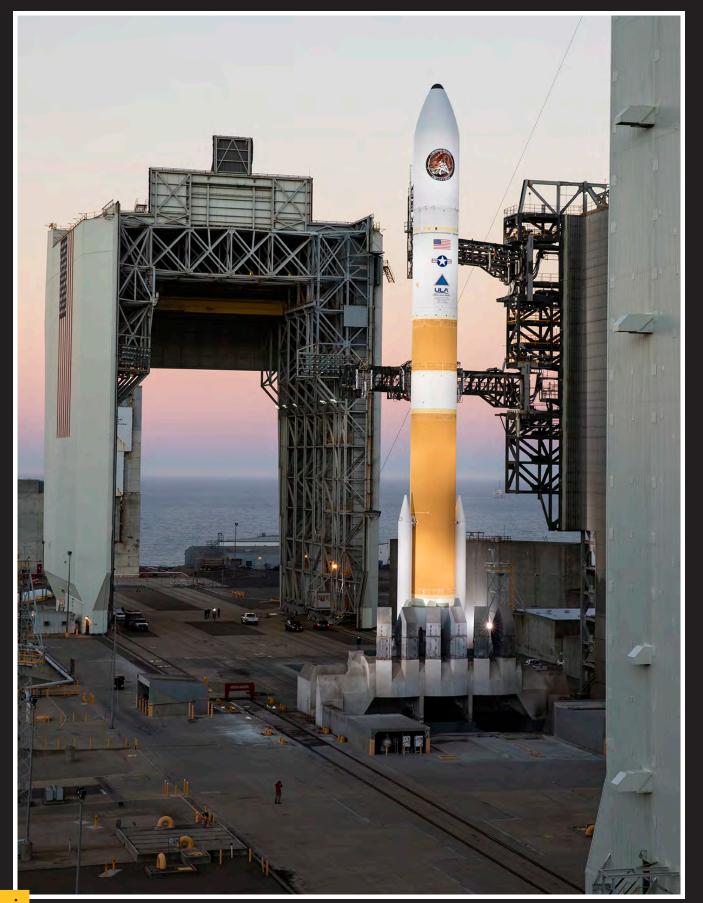
The Center for the Study of National Reconnaissance (CSNR) is an independent National Reconnaissance Office (NRO) research body reporting to the Director/Business Plans and Operations Directorate, NRO. The CSNR's primary objective is to advance national reconnaissance and make available to NRO leadership the analytic framework and historical context to make effective policy and programmatic decisions. The CSNR accomplishes its mission by promoting the study, dialogue, and understanding of the discipline, practice, and history of national reconnaissance. The CSNR studies the past, analyzes the present, and searches for lessons for the future.

Contact Information: Phone, 703-227-9368; or e-mail, csnr@nro.mil

To Obtain Copies: Government personnel may obtain additional printed copies directly from CSNR. Other requesters may purchase printed copies by contacting the Government Publishing Office. Selected CSNR publications are available on the Internet at the NRO web site.

Note: Images were pulled from NRO Archives.

Published by NATIONAL RECONNAISSANCE OFFICE Center for the Study of National Reconnaissance 14675 Lee Road Chantilly, Virginia 20151-1715


For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512-1800 D.C. area (202) 512-1800 Fax: (202) 512-2104 Mail: Stop IDCC Washington, D.C. 20402-0001 ISBN: 978-1-937219-29-1

Poppy - Thor-Agena - pre-launch - 15 June 1963.

TABLE OF CONTENTS

Forewordvii
Prefaceix
Introduction1
Aircraft Overflights7
The U-29
The A-12 OXCART15
The SR-71 Blackbird25
Aircraft Specifications
Early Satellites
Explorer35
Vanguard
SAMOS45
GRAB51
Рорру63
Parcae and Improved Parcae71
Film Return Satellites73
Corona75
Gambit/Gambit-3145
Hexagon165
Film Return Satellite Specifications
Experimental Programs179
Quill181
D-21 Drone
Manned Orbiting Laboratory
Launch
Westfiields253
NRO's 60 th Anniversary259
Timeline

FOREWORD

The Center for the Study of National Reconnaissance (CSNR) often receives requests for photographs associated with National Reconnaissance Office programs. Prompted by those requests, Christine Grannas and Chuck Glover have created a NRO pictorial history to help readers understand the history of the NRO in a visual fashion. The photo collection is intended to help readers see the technical complexity of satellites and the majesty of space intelligence collection.

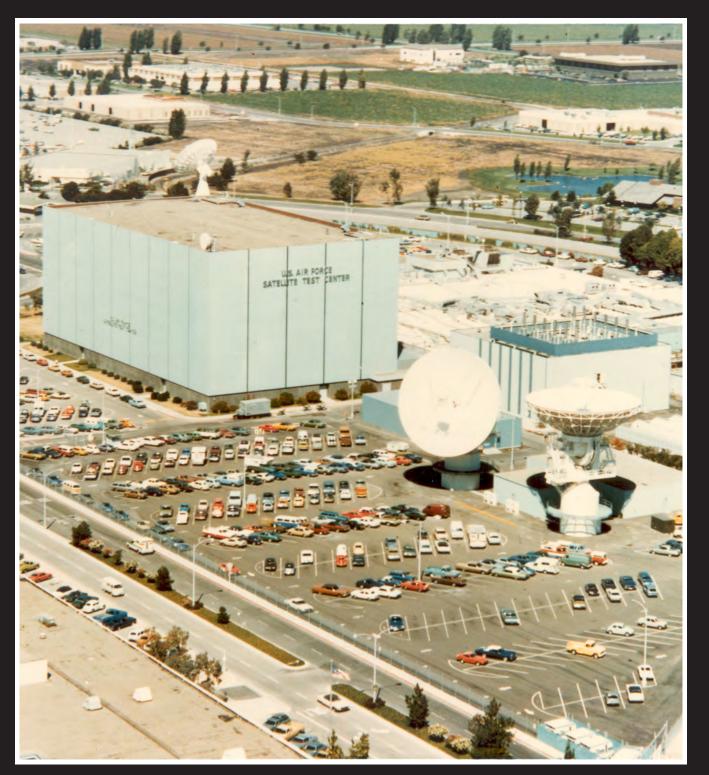
We have also included short written narratives to help readers who are not familiar with the history of the NRO and its programs to become more so. The narratives are intentionally brief so as to encourage readers to seek more understanding through reading other CSNR publications on national reconnaissance topics.

Our hope is that the pictorial history will prompt sharing and discussion among those who read the publication. Finally, this collection will help readers understand how the National Reconnaissance Office has gone "above and beyond" for more than sixty years in defending the national security interests of the United States.

James D. Outzen, Ph.D Director, Center for the Study of National Reconnaissance

PREFACE

In early September 1961, a highly secret Also, the photos are grouped together by intelligence organization was established to the various eras within signals and photodesign, develop, build, and operate national reconnaissance intelligence satellites. In reconnaissance satellites for the United States in reality, these time periods overlap and systems our effort to protect the country and our western frequently intertwine and cross paths with one allies against a surprise nuclear attack from the another. There is no clean break between time Soviet Union, and to obtain valuable intelligence periods or systems. Also, it was often customary on other countries and areas of importance to in the early days of these highly secret programs national security. That agency was the National to destroy photographs and physical components Reconnaissance Office – a partnership between of the work in order to maintain secrecy and the Department of Defense and the Central effective security measures. For that reason, Intelligence Agency – the fact of which was so some programs, such as Quill, have few if any highly classified, that for the first three decades of its photographs that were preserved to document existence, the vast majority of Congress members the history of the program. did not know about it, nor even did some of the It has long been said that a picture is worth a employees who worked here. To say the name of thousand words. With that in mind and wanting to the agency outside of appropriate secure facilities keep the attention and focus on the photographs, and the very small number of cleared personnel we have purposely kept the amount of text to was considered a criminal offense. the bare minimum necessary to provide the Certainly, time changes things. The existence of background of the photos.


the NRO and many of its earliest satellite collection We did not complete this project alone and systems now have been declassified. The photos would be remiss to not thank other members of contained in this book are some of the declassified the CSNR staff who contributed to the publication. photos that explain portions of the first 60 years We would like to thank James Outzen, the Director of NRO's history. There are many more programs of CSNR, for supporting this project and for his and fascinating work that the NRO has done, but wise counsel and support throughout the process. because the systems are still flying and remain Thank you to Michael Suk, NRO Historian, for his highly classified, they cannot yet be talked about keen editorial eye and relentless attention to detail. or included in this book. Future historians will write Also, we would like to give shout outs to the NRO about them decades from now. Today, it is our goal photographers, both past and present, without to showcase with you, the reader, the pictures that whom there would be no photos to publish, and the NRO can show, while still telling its story. to the unseen, but important folks in the NRO The photos in this publication are organized Prepublications Review Office for their review of in a manner that explains the pathway taken by this product prior to its publication.

The photos in this publication are organized in a manner that explains the pathway taken by the various departments and agencies of the U.S. Military and the Intelligence Community as they progressed through the early days of overhead reconnaissance. This publication discusses the first efforts in overhead reconnaissance that were necessarily performed by aircraft, then takes a look at early satellite systems that predated the establishment of the NRO, then moves on to the early NRO developed satellite system, and follows with a look at some of the experimental programs that provided valuable information and scientific discovery despite not being put into actual service.

Christine Grannas Deputy Chief, Historical Documentation and Research, CSNR

and

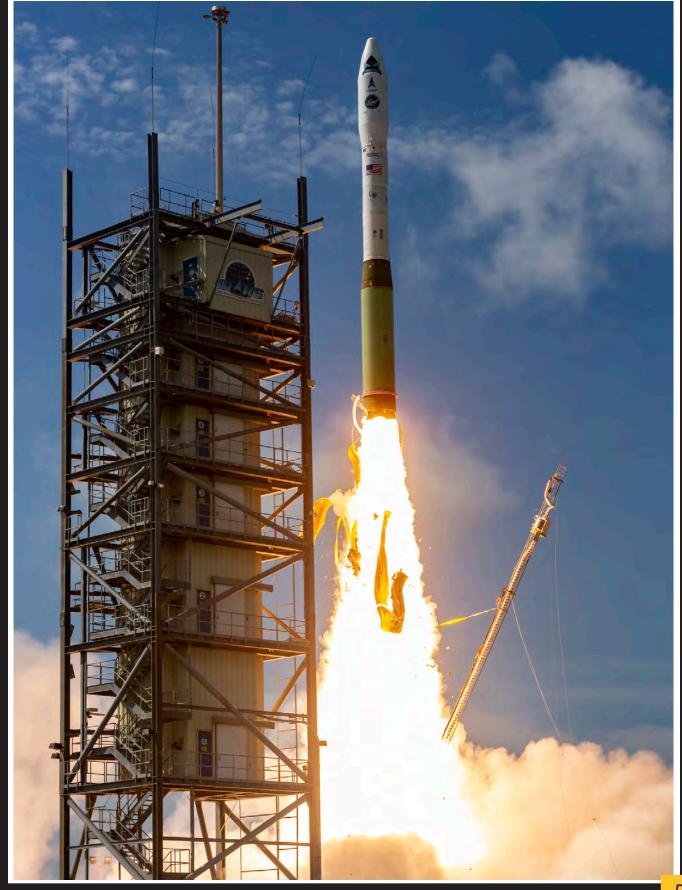
Chuck Glover Visualization Analyst, CSNR

INTRODUCTION

In the late evening hours of 31 January 1958, groundwork for the creation of the NRO, which was the U.S. Army launched a Juno rocket carrying the formed by President Kennedy, just nine months Explorer-1 satellite from Launch Complex 26A at after Eisenhower left office. Cape Canaveral in Florida. This momentous event The U.S. began overhead surveillance of the Soviet Union shortly after WWII, flying reconnaissance aircraft around the periphery of the country, collecting signals and imagery intelligence. However, this practice provided no information about what was located in the vast open spaces of the middle of the Soviet Union. The answer to this problem was the U-2 reconnaissance aircraft. Approved by Eisenhower in 1954 and flown for the first time in August 1955, less than one year later the U-2 was ready for deployment. On 20 June 1956, CIA pilot Carl Overstreet conducted the first U-2 flight over denied territory, flying over East Germany and Poland, and on 4 July 1956, Hervey Stockman flew The U.S. President at the time, Dwight D. a U-2 over the Soviet Union for the first time. In just the first two months of U-2 operations, photo interpreters were able to debunk the "Bomber Gap," the belief that the Soviets possessed a much larger number of long-range, nuclear-capable bombers than the U.S. Air Force. Over the next four years, the U-2 would fly a total of 23 successful U-2 missions over the Soviet Union before Francis Gary Powers was shot down on 1 May 1960, ending U.S. aircraft overflights of the Soviet Union.

was the first successful launch of a U.S. satellite, two months after the U.S. Navy failed with its first launch attempt of the Vanguard program and four months after the Soviet Union launched the world's first-ever satellite, Sputnik-1, on 4 October 1957. Naturally, as most people at the time imagined, if rockets were powerful enough to launch small satellites into outer space, then it was only a matter of time until they could launch nuclear weapons around the world. By 1959, both the United States and the Soviet Union had operational nucleararmed intercontinental ballistic missile (ICBM) units. Eisenhower, as well known for being the Supreme Allied Commander in Europe for the last half of World War II as he was for being President, was extremely concerned about the dangers presented by ballistic missiles. With the shock and horror of the Japanese attack on Pearl Harbor still fresh in his mind, he feared what a surprise attack with ICBMs could do to the nation and to the world. He often admitted that his main goal as President was to prevent "another Pearl Harbor" from befalling the country. But how can one prevent a surprise attack When Eisenhower promised not to fly aircraft when an ICBM can travel across the world in a matter over the Soviet Union any longer after the Powers of minutes? It became clear to Eisenhower that to shootdown, the country needed to find a new way do so, he would need better strategic intelligence to collect strategic intelligence. The obvious answer about the Soviets' capabilities and intentions.

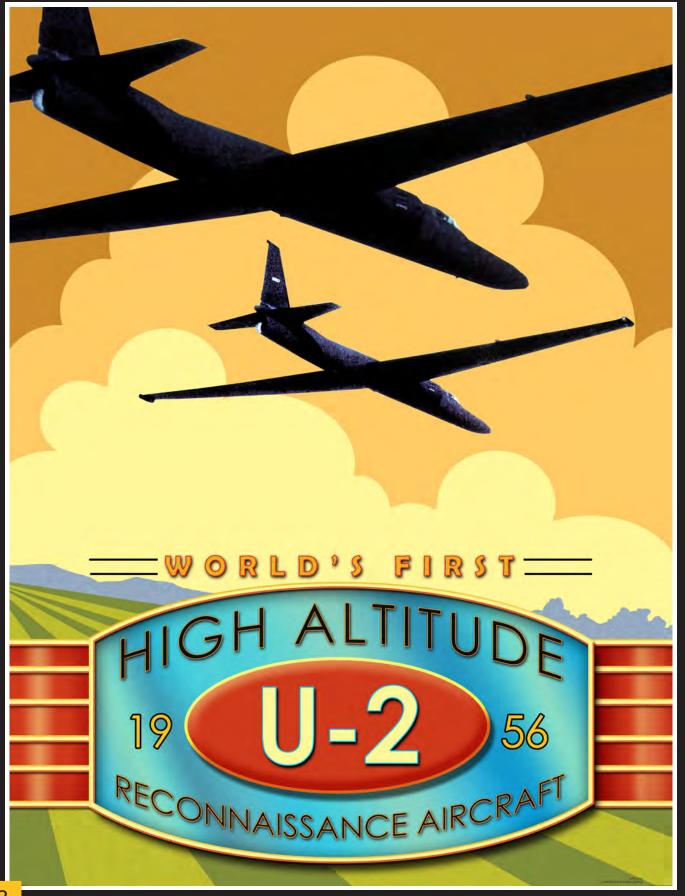
was to move into space. Luckily, that event had With many typical intelligence-gathering been foreseen, and work on intelligence satellites methods unavailable to the West due to the was well underway. On 22 June 1960, just a month Iron Curtain and the Soviets' closed society, the and a half after Powers was shot down, the U.S. Navy U.S. had to look for new methods of gathering launched the world's first intelligence satellite, the intelligence. Eisenhower was a strong supporter Galactic Radiation and Background (GRAB) signals of aerial reconnaissance photography because of satellite. Two months later, on 18 August, the Air his extensive use of it during WWII, so he quickly Force launched the first photointelligence satellite, became a proponent of strategic intelligence Corona, and retrieved the first reconnaissance gained from overhead surveillance. By the late imagery returned to Earth. By the end of the 1950s, Eisenhower authorized the development summer of 1960, strategic intelligence had entered of the U-2 and A-12 spy planes and the GRAB and the Space Age, and the world was forever changed. Corona intelligence satellites. He also laid the



One year later, on 6 September 1961, the NRO was formed and remained one of the most secret government organizations until 1992 when it was finally declassified. In those first formative years, the NRO developed a large number of imagery, signals, and weather satellites and experimented with numerous other intelligence-gathering methods. With the advent of digital imagery and near real-time satellites in 1976, film-based imagery satellites became slow and redundant, and they were phased out in the mid-1980s. President Clinton declassified the Corona program in 1995, and since then, numerous other NRO projects have also been declassified. The reader of this book with get to enjoy the results of all those declassifications.

While numerous other books and studies have been dedicated to individual NRO programs over the years, this book is a one-stop shop of spacebased intelligence gathering all in one handy reference. The purpose of this book is to show the entire gamut of the country's space reconnaissance in a visual context. This book contains numerous pictures that could not be included in previous histories, and many of these photos from NRO's archives have never been published before. You, the reader, get to see them for the first time.

> Michael Suk NRO Historian, CSNR


4

AIRCRAFT OVERFLIGHTS

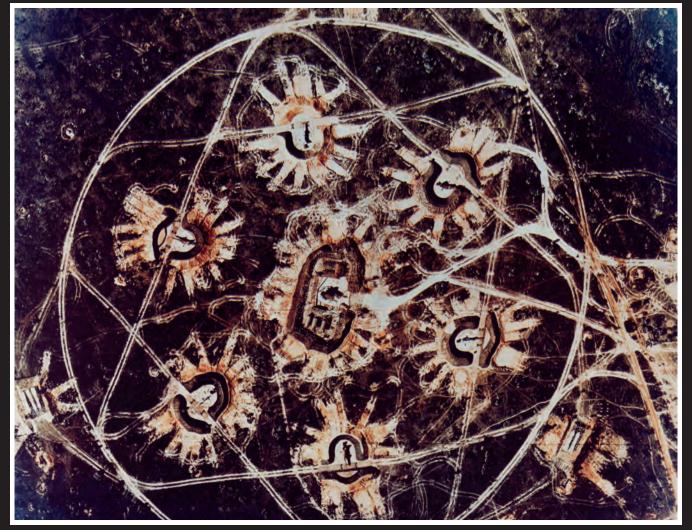
After the United States exited World War II, During the mid to late 1940s, in the aftermath of World War II, the United States and its western multiple military aircraft systems were available to be modified for use as aerial reconnaissance allies needed to collect intelligence information on platforms to collect intelligence about the Soviet the military and industrial capabilities of the Soviet Union and other adversaries. The Soviet Union was Union and other eastern bloc adversaries. The first to be used, the P-2 Neptune and the F-80 an emerging superpower and the threat of war Shooting Star, were flown near the periphery of the with the West loomed large. Relations with the United States were increasingly tense as the Soviets Soviet Union and other denied countries to collect intelligence from cameras and sensors mounted on expanded their control and influence beyond the aircraft. Beginning in December 1950, modified their land borders and into Eastern Europe. The country and its communist leaders long harbored RB-47 Stratojet bombers were used to conduct grievances against the United States for refusing to photographic and signals detection overflight missions of the Soviet Union. While the information recognize the legitimacy of the Soviet Union within the international community and for the delay in obtained from the overflight reconnaissance America's entry into World War II. They also resented missions was valuable, it was also limited to what the containment strategy being used by western was available very near the borders of the Soviet policy makers to defend against the post-war Soviet Union, leaving questions unanswered on what was threat. It was at this same time that the Soviets going on much deeper inside the land mass as these areas remained outside the reach of the aircraft. achieved a series of technological advancements, There were also issues of diplomatic fallout from the including the ability to produce nuclear weapons and the delivery systems necessary to attack United States' incursions into Soviet airspace, and the United States. They were openly hostile and the overflights were exceptionally dangerous as provocative in their actions, sparking global fears Soviet air defenses regularly attempted to intercept of armed conflict as the relationship between the flights, frequently damaging the aircraft and on several occasions succeeding in shooting down the the two countries progressively deteriorated. The Soviet Union had become the United States' most aircraft and killing the crews. formidable and dangerous enemy.

When the memory of the Pearl Harbor attack As tensions continued to mount, U.S. leaders became coupled with the fear that the Soviets struggled with obtaining the intelligence could conduct a surprise nuclear attack, and necessary to answer difficult national security with decision makers facing an information questions about Soviet intentions. The Soviet vacuum, it became clear that new methods to obtain intelligence were needed. To increase Union was a closed society, virtually locked information gathering capabilities, the U.S. turned behind the Iron Curtain, and nearly all activity and information was tightly controlled by the to the development of new aircraft that could fly at higher altitudes and faster speeds than Soviet communist government. Additionally, Soviet air defenses could counter. The first of those new propaganda and misinformation campaigns led to aircraft was the U-2, which was guickly followed by concerns that their military attack assets were far two supersonic aircraft, the A-12 OXCART and the greater in number and capability than those of the United States. However, the information needed to SR-71 Blackbird. assess the Soviet Union's true abilities and strategic plans was lacking. The country presented an exceptionally difficult and challenging intelligence target - one that was virtually impenetrable by traditional human intelligence gathering methods and tradecraft of the day. With few options available, the United States turned to aerial reconnaissance to fly near, and sometimes over Soviet territory in missions known as overflights.

THE U-2

when combined with an overestimated number of At the dawn of the Cold War with the Soviet Union, intelligence information on Soviet military the aircraft, ignited the bomber gap controversy. The and industrial capabilities existed in a vacuum, and bomber gap was the fear that the Soviet Union was surpassing both the number and capabilities of U.S. memories of the attack on Pearl Harbor, attributed in part to a lack of information on the plans of the bombers. Japanese, weighed heavily on U.S. leaders. It was In November 1954, President Eisenhower approved of paramount importance that another strategic the development of the U-2, the world's first high surprise did not occur, so the U.S. turned to aerial altitude reconnaissance aircraft, to provide a new reconnaissance missions over the Soviet Union and capability to perform overflights of the Soviet Union. Eastern Bloc countries to gather the information. Using the CIA's special contracting and covert funding The overflights were dangerous, provocative, and capabilities, work began on the U-2 development subject to diplomatic fallout. As early as 1946 project, code named AQUATONE. Shortly thereafter, experts recommended the design of new highon 4 July 1956, the first U-2 mission over the Soviet altitude reconnaissance platforms, but while Union was flown by pilot Hervey Stockman. multiple efforts to address this need started within The U-2 was one of the most important sources of strategic intelligence on the Soviet Union and is

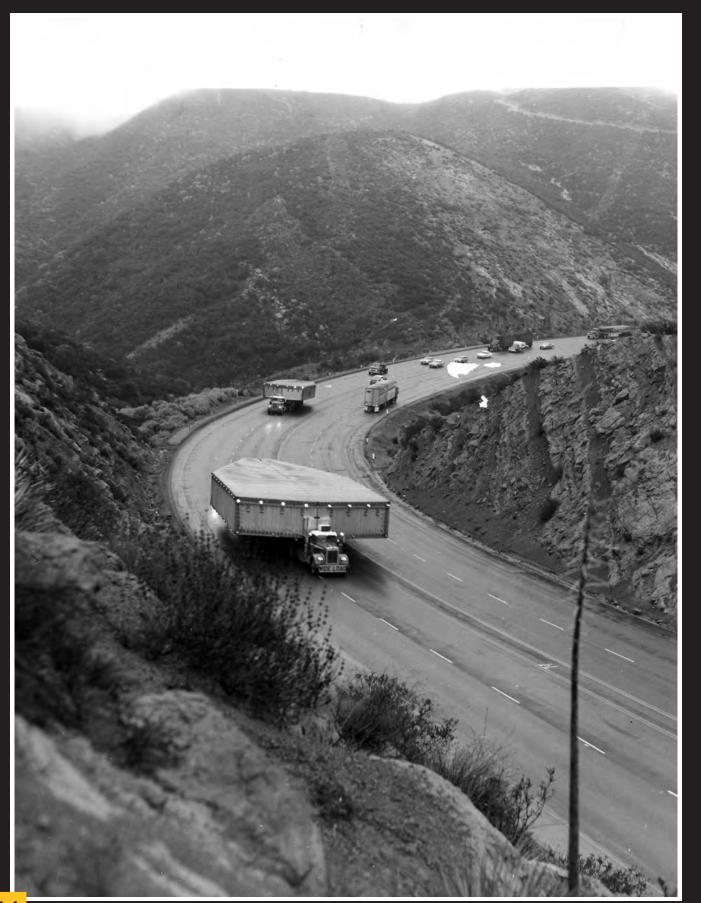
the Air Force and CIA, the aircraft and the advanced capabilities would not exist for nearly a decade. credited with dispelling the Cold War bomber gap During the late 1940s and early 1950s, the controversy as reconnaissance photos taken from the technological achievements of the Soviet Union U-2 flights enabled an accurate count of the Soviet continued to ratchet up tensions with the West. long range bomber aircraft and reassured U.S. leaders In August 1949, the Soviets detonated their that the Soviet Union had not surpassed the United first atomic bomb, three years ahead of U.S. States in terms of aerial assets. While U-2 flights over intelligence estimates. Then, four years later, the Soviet Union were halted in May 1960 after Francis they test detonated a hydrogen bomb that was Gary Powers was shot down, the U-2 continued to fly manufactured using a production method deemed other high-altitude reconnaissance missions around superior to that used by the United States. The the world, including missions over Cuba before and Soviets also aggravated world tensions by, among during the Cuban Missile Crisis in 1962. The U-2 and other things, enabling the North Korean invasion of its successor reconnaissance planes, the A-12 and the South Korea in June 1950, brutally crushing a 1953 SR-71, were incorporated into NRO's program D, and uprising in East Berlin, and routinely attempting jointly managed by the CIA and the USAF until 1974 to cause dissension between Western Europe when the NRO transferred the U-2 along with other and the United States. To newly elected President Program D aircraft assets to the Air Force. As of 2022, Eisenhower, the Soviet Union was a dangerous 66 years after the first U-2 flight, modern U-2s still fly opponent with an aggressive foreign policy stance intelligence, surveillance, and reconnaissance missions and appeared to be moving toward a position of for the Air Force. military and technological parity with the U.S.


In 1953 concerns grew around the Soviet ability to deliver a nuclear strike against the continental United States when an American military attaché sighted a Mysasishchev-4, a new type of Soviet intercontinental bomber aircraft, at Ramenskoye airfield. Later designated the Bison, the bomber was powered by jet engines rather than the typical turboprops of previous Soviet long-range bombers, and pictures of the Bison taken at a Moscow air show had a chilling impact on the U.S. Intelligence Community. In the summer of 1954, pictures of the Bison were published in the news media, that U-2

9

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

U-2


U-2 Photo of Soviet SAM site in Cuba.

U-2 image of Tyuratam missile testing range. <

U-2

THE A-12 OXCART

During its development and until the U-2 successor aircraft to replace the U-2. Work high-altitude aircraft first flew over the Soviet continued over the next few years as the CIA and Union, the CIA was confident that Soviet defense Lockheed developed the highly secret aircraft. radars would not be able to track it, and officials The A-12 was intended to meet the nation's need involved in its design predicted that its useful life for a very fast, very high-flying reconnaissance as a reconnaissance platform would last about 24 aircraft that could avoid Soviet air defenses, and months before Soviet defense systems would be became operational on 12 November 1965. By able to intercept it and shoot it down, thus ending that time the A-12's originally intended mission, its collection capabilities. Both predictions ended photoreconnaissance overflights of the Soviet up being incorrect. The very first U-2 flight over the Union, no longer existed as the flights had been Soviet Union on 4 July 1956 was not only detected terminated after the Gary Powers incident. As a by Soviet defense radars, but its flight path was result, the A-12 flew for only one reconnaissance tracked guite accurately. However, despite being operation, codenamed BLACK SHIELD, a series of tracked on radar the U-2 aircraft successfully 26 flights over East Asia from May 1967 to May operated for nearly four years, double the original 1968 to collect high-quality imagery in support of estimate, before the U-2 piloted by Francis Gary the Vietnam War. Powers was shot down on 1 May 1960.

The A-12 had a documented maximum speed From the time of its initial flights, efforts began and altitude of 2,208 MPH at 90,000 feet, set to make the U-2 less vulnerable to air defenses by during a test flight in 1965. It was, and still is, the reducing its radar cross section and introducing fastest and highest aircraft to ever fly, but does not the use of radar-absorbing material. While some hold the official world record because at the time efforts achieved considerable success, none it flew, the A-12's capabilities were part of a highly completely solved the issues. The design of an classified CIA program that was not declassified aircraft less vulnerable to radar detection and shoot until the 1990s. Therefore, the official world record down needed to be accelerated, a decision later is held by the SR-71 Blackbird, the Air Force's supported by a 1957 advisory committee analysis slightly slower and lower flying version of the A-12. that showed the probability of shooting down a By the time of CIA's first A-12 deployment in plane varied with speed, altitude, and radar cross-1967, Corona photoreconnaissance satellites section. The analysis concluded that supersonic were launched regularly and collecting thousands speed, the speed at which an object moves faster of images worldwide each year. Although its than the speed of sound, greatly reduced the imagery was less timely and of poorer resolution chance of detection by radar. The ability to achieve than the A-12, Corona was invulnerable to antisupersonic speed first occurred in October 1947 aircraft missiles and much less provocative than when Captain Charles "Chuck" Yeager piloted a Bell overflights. At the same time, the U.S. Air Force X-1 rocket powered plane to a top speed of Mach was developing the SR-71, a modified version of 1.07, and in August 1955, Colonel Horace Hanes the A-12. Seeing little value in maintaining both became the first to pilot a turbojet powered aircraft overt SR-71 and covert A-12 fleets with similar to a top speed of Mach 1.08 at 40,000 ft altitude, capabilities, President Johnson ordered the A-12's setting a world record. Supersonic flight was not retirement in 1968. new, but the combination of supersonic speed at extreme altitudes, in a jet powered aircraft, did not yet exist.

From late 1957 to late 1958, early designs were underway for what would eventually be known as the A-12 OXCART, or Archangel, reconnaissance plane. The A-12 was intended to be the supersonic

A-12 Oxcart

A-12 aircraft mock-up undergoing radar testing. ◀

17

A-12 Oxcart

A-12 Oxcart

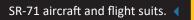
21

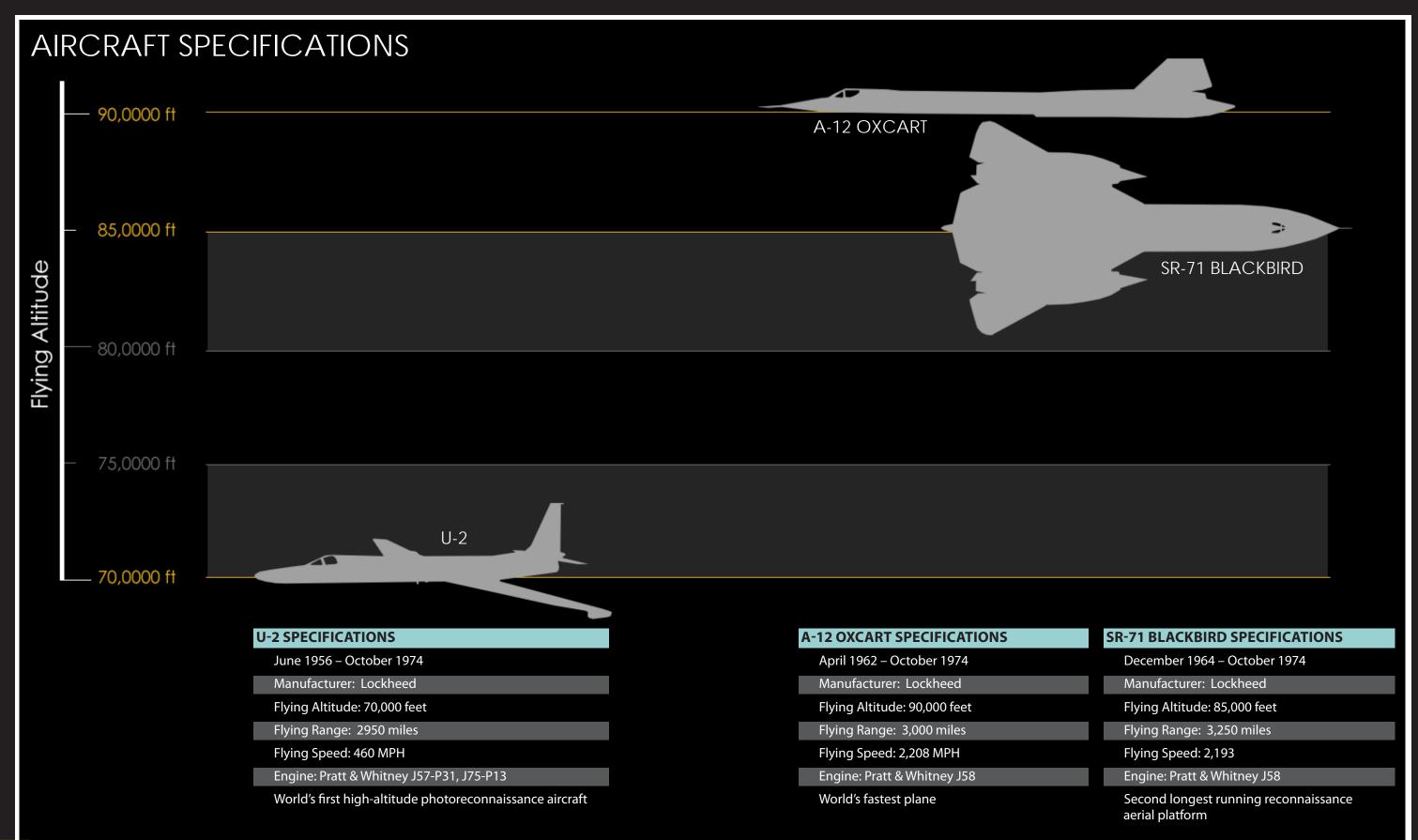
THE SR-71 BLACKBIRD

While the CIA was testing the A-12 OXCART, the Air Force was developing its own variants of highspeed aircraft, the YF-12A interceptor and the SR-71 reconnaissance version. Both Air Force variants were two-seat aircraft to allow for a co-pilot to handle additional weapons or sensors. Because of this, the single-seat A-12s were both smaller and lighter than the Air Force models, allowing the A-12 to fly higher and faster. While the A-12 was concerned primarily with photo acquisition, the Air Force version carried two Technical Objective Cameras (TEOC), as well as several additional optical and signals intercept sensors. These additional sensors provided greater flexibility and a greater mission profile, which was part of the reason the SR-71 survived after the A-12 was cancelled. The YF-12A never advanced past the prototype phase.

The SR-71 Blackbird was a follow-on version of the A-12 and was used as a long-range, advanced, strategic reconnaissance aircraft. The first flight of an SR-71 took place in December 1964, more than two years after the A-12, and the first SR-71 to enter service was delivered to the 4200th (later 9th) Strategic Reconnaissance Wing at Beale Air Force Base, California, in January 1966.

The term Blackbird refers only to the SR-71, and not the A-12. Sometimes confused with A-11, the A-11 was simply a counter-intelligence attempt used during the Presidential announcement of the existence of the SR-71 aircraft. The prototype "A-11" was merely a YF-12A that was used in the official world speed/altitude record trials. Interestingly, the Air Force's version was initially named the RS-71, or Reconnaissance/Strike-71. However, during its public unveiling, President Johnson transposed the letters and called it the SR-71. Rather than correct the President, Air Force officials created a new Strategic Reconnaissance (SR) category and renamed the aircraft. Upon its retirement in January 1990, the SR-71 was the second longest running reconnaissance platform for the United States.




SR-71 Blackbird

EARLY SATELLITES

In the February 1945 edition of Wireless These early studies and experiments continued throughout the late 1940s and early 1950s. When the availability of a launch vehicle became imminent, the Air Force issued an operational requirement for a means to provide continuous surveillance of an enemy's war-making capability. This requirement led to the WS-117L program, which upon its 1954 inception, became the ancestor of all American reconnaissance satellites, and from 1954 to 1957, the WS-117L program developed studies for reconnaissance satellites carrying various imagery and signals intelligence payloads. However, the program languished without much attention until the Soviet Union launched the world's first intercontinental ballistic missile in August 1957, and barely two Shortly thereafter, in 1946, the RAND months later, launched and successfully orbited Sputnik-1, the first artificial satellite. Officials now feared that the U.S. lagged the Soviet Union in the development of strategic nuclear forces and with the Soviets the first to reach space, a new sense of

World, science fiction writer Arthur C. Clarke wrote, "A rocket which can reach a speed of 8 km/sec parallel to the earth's surface would continue to circle it forever in a closed orbit; it would become an 'artificial satellite'....It would thus be possible to have a hundred-weight of instruments circling the earth perpetually outside the limits of the atmosphere and broadcasting information as long as the batteries lasted." Clarke had anticipated the idea of using geosynchronous satellites for receiving and re-transmitting radio signals from space – the basic concept for both a communications satellite and a satellite for collecting Signals Intelligence. Corporation published a report, Preliminary Design of an Experimental World-Circling Spaceship, which provided an engineering analysis for a generic launch vehicle and satellite. The report speculated that such a system could function as urgency was placed on the WS-117L program. a communications or scientific research platform. However, it also mentioned in a single paragraph With increased attention and emphasis on the that such a "satellite offers an observation aircraft WS-117L program, by 1958 there were two satellite that cannot be brought down by an enemy who efforts within the Defense Department. One effort has not mastered similar techniques." was the Vanguard satellite research program at

the Naval Research Laboratory, which eventually Thus, it was in the years immediately following would provide the basis for GRAB, the first signals the end of World War II that the idea of using intelligence satellite. The other effort was the Air space for military purposes had begun to Force's WS-117L military system, which would later percolate around the various armed services. All lead to two programs: Corona, developed by the of the American military services saw the potential CIA as the first imagery intelligence satellite; and and began programs to develop rockets and Samos, an Air Force satellite program that would spacecraft, but in the lean post-war years, these combine both imagery and signals intelligence were shoestring efforts. collection. The Samos, GRAB, and Corona • U.S. Army efforts led to the Explorer programs, together with the U-2, A-12, and SR-71 program, which in January 1958 launched reconnaissance aircraft, were the building blocks of Explorer-1, the first successfully orbited what would become the National Reconnaissance American satellite. Office in 1961.

• U.S. Navy efforts led to the Vanguard program, and the launch of the first Vanguard satellite in March 1958, which still orbits the Earth today.

• U.S. Air Force efforts led to the Weapons System 117L (WS-117L) program providing the basis for two later satellite systems, Samos and Corona.

EXPLORER

On 8 November 1957, soon after the Sov Union launched Sputnik-1 on 4 October 195 which was quickly followed by the launch Sputnik-2 on 3 November 1957, the Secretary Defense directed the Department of the Army launch a satellite using its Jupiter C rocket and do so within 90 days. To complete the task, the L Army Ballistic Missile Agency (ABMA), located Redstone Arsenal in Alabama, began working w the Jet Propulsion Laboratory, to design, build, a operate the satellite that would be the rocke payload. They completed the task in just 84 da and on 31 January 1958, the U.S. Army successfu launched Explorer-1 from Cape Canaveral, Florid Successful launch on 31 January 1958 The Jupiter C was developed under the direction of Dr. Wernher von Braun, a German scientist who Operated until 23 May 1958, burned up upon rehad worked on the German V-2 missile program entry on 31 March 1970 after more than 58,000 during World War II. After the war, he brought his orbits expertise to the U.S. and worked to advance the launch capabilities and get America in to space.

Explorer-1 was the first successful U.S. satellite and carried a scientific experiment payloa designed to measure radiation around the earth. Dr. James Van Allen, a physicist at the State University of lowa, designed and built the scientific instruments primarily a cosmic ray detector designed to measure the radiation environment while in Earth orbit. The Explorer-1 satellite led to the discovery of the Van Allen Belts, areas of charged radiation particles that originate from solar wind activity and cosmic rays that are trapped in space around the earth by the Earth's magnetic field. Explorer-1 operated until May 1958 and then continued to orbit the Earth until March 1970 when it burned up during re-entry into the Earth's atmosphere.

After the successful launch of the first Explorer angle satellite in January 1958, several more satellites **Explorer-6** were launched in rather short order. Some were successful, others were not. One of the successful Successful launch on 7 August 1959 launches was Explorer-6 in August 1959, which Took the first photograph of Earth from space on took the first ever photograph of the Earth from 14 August 1959 orbit. The Explorer program was later transferred from the Army to NASA and as of December 2021 the Explorer program continues with nearly 100 scientific satellites launched over the first six decades of the program. While the Explorer

	we are astallized and the astablishment
iet	program satellites pre-dated the establishment
57,	of the NRO and were never part of the activities
of	that would become part of the organization, the
of	history and contributions of the Explorer program
to	are important to the NRO and to the U.S. space
to	reconnaissance programs because the successful
.S.	launch and operation of the Explorer-1 satellite in
at	1958 marked the successful entry of America into
ith	the realm of space operations.
nd	
et's	
iys	EARLY EXPLORER LAUNCHES
·	
lly	Explorer-1
la.	

Exp	lo	rer	-2
-----	----	-----	----

Launch failure on	5 March	1958
-------------------	---------	------

d	Cause: 4th stage	of Jupiter-C	rocket failed	to ianite
u	cause, nurstage	or suprice c	rocketranea	co ignite

Explorer-3

	Successful	launch	on 26	March	1958
c S	Juccessiui	launch	01120	march	1950

- Operated until 16 June 1958
- **Explorer-4**
- Successful launch on 26 July 1958
- Operated until 6 October 1958
- **Explorer-5**
- Failure on 24 August 1958

Cause: Rocket booster collided with 2nd stage after separation, causing incorrect upper stage firing

Explorer satellite test - James G. Winkler. ∢

Explorer

The Vanguard Project was an undertaking by to the revelation that the earth is ever so slightly the U.S. Naval Research Laboratory to participate pear shaped rather than round. The satellite sent in the International Geophysical Year, a worldwide its final data transmission in 1964, but subsequent program involving a series of coordinated ground tracking continued to provide scientists observations, encompassing multiple fields with data concerning the effects of the sun, moon, of geophysics, established to study various and atmosphere on satellite orbits. The Vanguard geophysical phenomena of the Earth within project and personnel were transferred from the its planetary environment. The International Navy to NASA after the agency was founded by Geophysical Year was held during the solar the National Aeronautics and Space Act of 1958 maximum cycle of July 1957 to December 1958. and became the hub of what would become the Goddard Space Flight Center. As of 2022, Vanguard The basic objectives of the Vanguard Project 1 continues to orbit with an apogee and perigee nearly unchanged since its 1958 launch and is the oldest artificial object to orbit Earth.

were, by the end of the International Geophysical Year, to build a satellite launch vehicle, orbit one satellite, track and verify the satellite's orbital path, and perform one scientific experiment while in The Vanguard research program and its orbit. Beginning in December 1956 and ending in satellites pre-existed the 1961 establishment of the April 1958, a series of test launches were conducted NRO and were never a part of the NRO operations, by the Navy to evaluate the various aspects of the but the Vanguard satellites provided the basis for launch vehicles and facility complex, range safety, a later Naval Research Laboratory satellite project satellite instrumentation, and other aspects of the known as Galactic Radiation and Background, or Vanguard program. On 6 December 1957, the first GRAB. An electronic signals intelligence satellite, three stage test vehicle of the Vanguard program GRAB would become the world's first successful was set to launch and place the first U.S. satellite reconnaissance satellite and was ultimately into orbit, however the attempt ended in failure assimilated into the National Reconnaissance when the vehicle exploded on the launch pad less Program and the NRO. than one second after liftoff. Ultimately, it would be the Army's launch of Explorer-1 in January VANGUARD LAUNCHES 1958 that would place the first U.S. satellite into **RESULTING IN ORBIT** orbit, but despite the disappointing setback, work continued on the Vanguard program. Vanguard 1

The first successful launch of a Vanguard vehicle came three months later, when the first Vanguard satellite was launched into orbit on 17 March 1958. Known as Vanguard 1, the satellite was a small 3.25 pound, 6.5 inch diameter, aluminum sphere that was placed into orbit with an apogee of 2,500 miles. The satellite's batteries lasted only 20 days, but the solar cells continued to provide power to the satellite for an additional seven years. Vanguard 1 returned data and information on air density, temperatures, and micrometeorite impacts. Its orbital data provided a significant understanding of upper atmospheric physics, geodesy, geodynamics, solar terrestrial relationships, dynamical astronomy, and exospheric structure. Vanguard 1 data also led

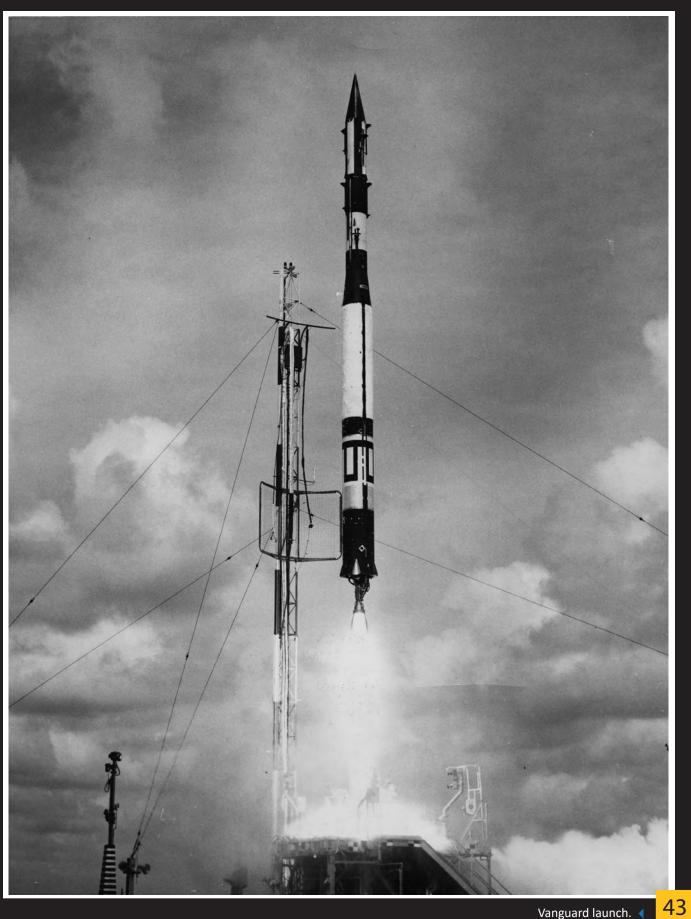

Successful launch on 17 March 1958

Vanguard 2

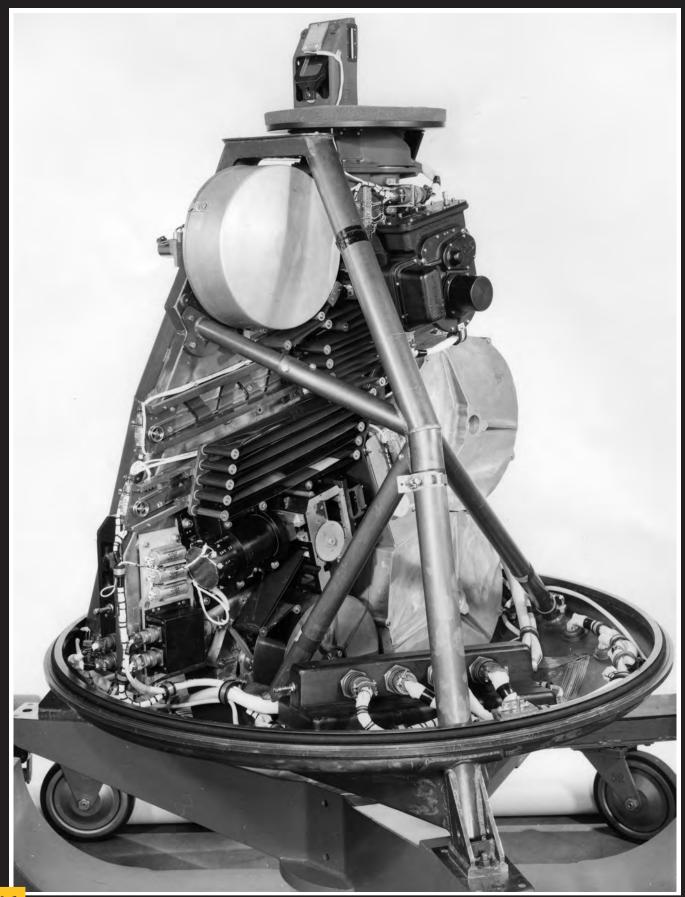
Successful launch on 17 February 1959

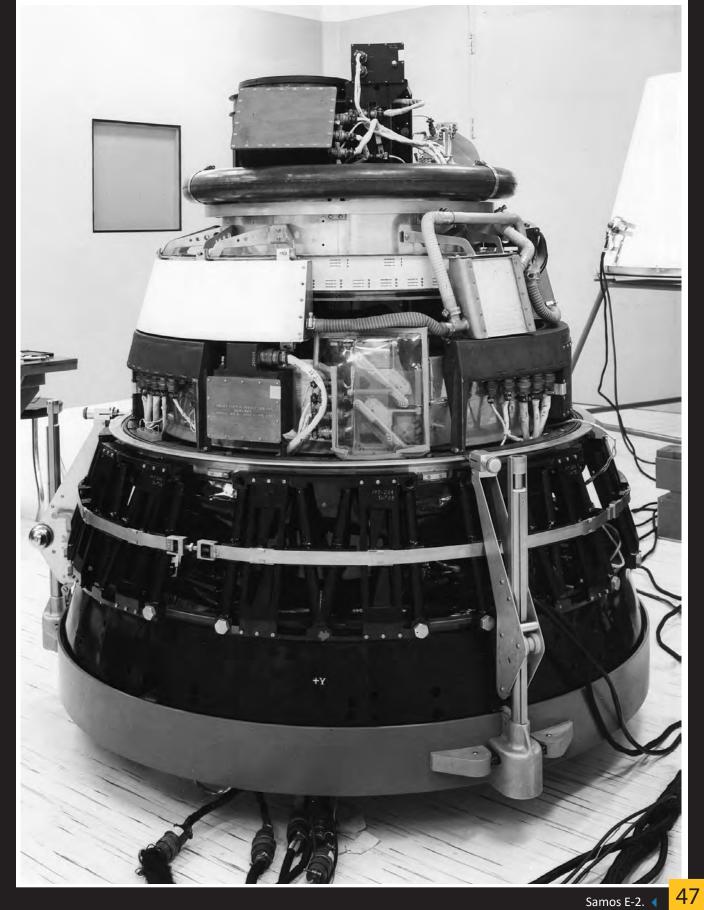
Vanguard 3

Successful launch on 18 September 1959

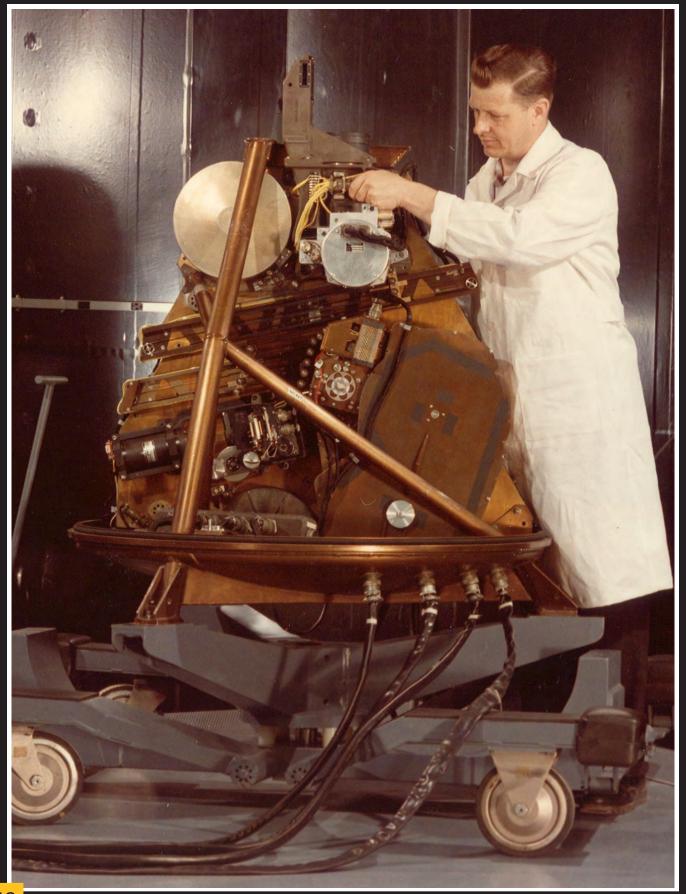


A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE


42 Vanguard. Vanguard

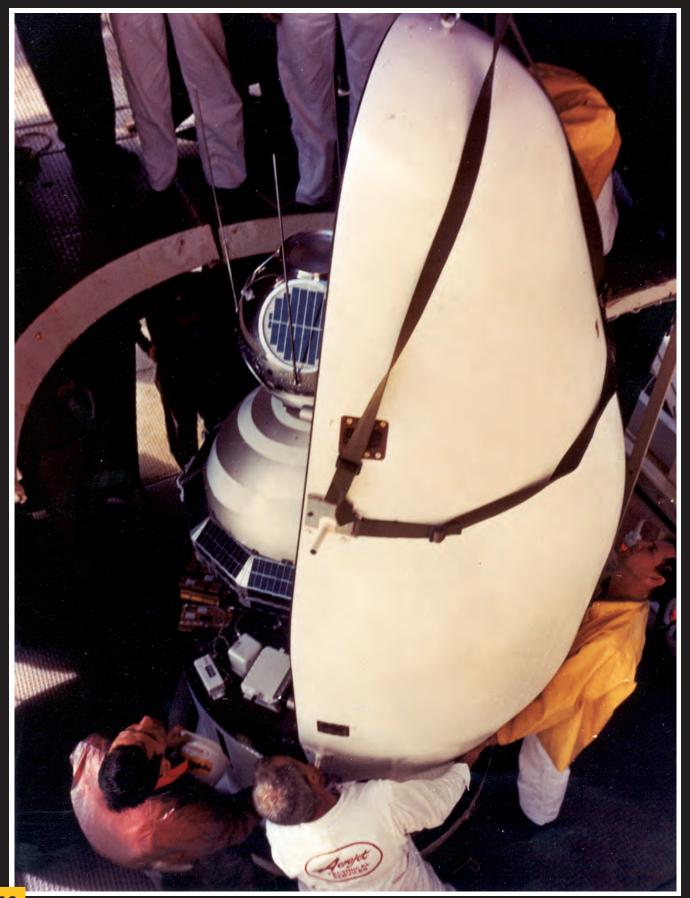


SAMOS


from the WS-117L program it had two planned During the years following the end of World War photographic capabilities, designated as E-1 and II, multiple efforts were begun to develop satellites E-2. Both originating options involved the on-orbit from which intelligence could be collected from space, but most of these early efforts gained little exposure and processing of the film. However, over the life of the Samos program, six variations of the traction. The earliest effort of real significance imaging system would be developed, including began with a 1946 report, from what would film-return options, but only three would ever fly: later become RAND Corporation, which detailed the possibilities of an "earth-circling spaceship" E-1, E-2, and E-6. and called for the development of satellites for From a technology standpoint, the Air Force national security purposes. Many saw this as an experienced limited success in their film-readout opportunity for developing intelligence collection satellite efforts, and by 1960 the Samos program and reconnaissance from space. For nearly a was not meeting its program goals. After multiple decade RAND pursued these efforts under Project difficulties and setbacks, the film-readout efforts Feedback, and by the mid-1950s the U.S. Air eventually withered, and the Samos program was Force had committed funding to study satellites cancelled in 1963. The only use of the film-readout for space-based reconnaissance under WS-117L, technology came in 1966 when the National a program that proposed the development of Aeronautics and Space Administration (NASA) both imagery and signals collection satellites. The used an improved Samos film-readout system nation's first reconnaissance satellite program, the for imaging of the lunar surface to support the Satellite and Missile Observation System (Samos), Apollo program. In the later 1960s and early 1970s was one of the satellite programs born from the Air the film readout concepts originally developed Force's WS-117L program. under Samos would be improved upon and lead to the digital photography and near real-time Samos was an ambitious program that proposed both imagery and signals intelligence reconnaissance imaging systems that would eventually come to fruition and be launched on components designed to collect against Soviet NRO systems in the mid-1970s. In contrast, the film ICBM sites and operations. Overall, the signals return elements of Samos lived on and in the early collection components of Samos were successful 1960s matured within the Corona and Gambit and ultimately incorporated into NRO's Program A. However, the imagery components of Samos programs. The Corona, Gambit, and Hexagon filmreturn satellites can trace portions of their origins were not as successful and faced several daunting to the Samos program.

technology challenges with the mechanics of returning reconnaissance photos from space. At the time the Samos program began, nothing had yet been launched into space, so it was unknown if or how anything could be returned. The program included options to develop two types of satellites for returning the imagery collected. The first proposal was a "readout" system where the film would be processed while the satellite remained in orbit, the images translated into an electrical signal by means of a flying-spot scanner, and then the signal transmitted to earth for re-composition as a picture. The second proposal was a "film return" system, where the film would be returned to earth via a separate reentry capsule for development of the film and intelligence exploitation back on earth. Originally, when Samos emerged

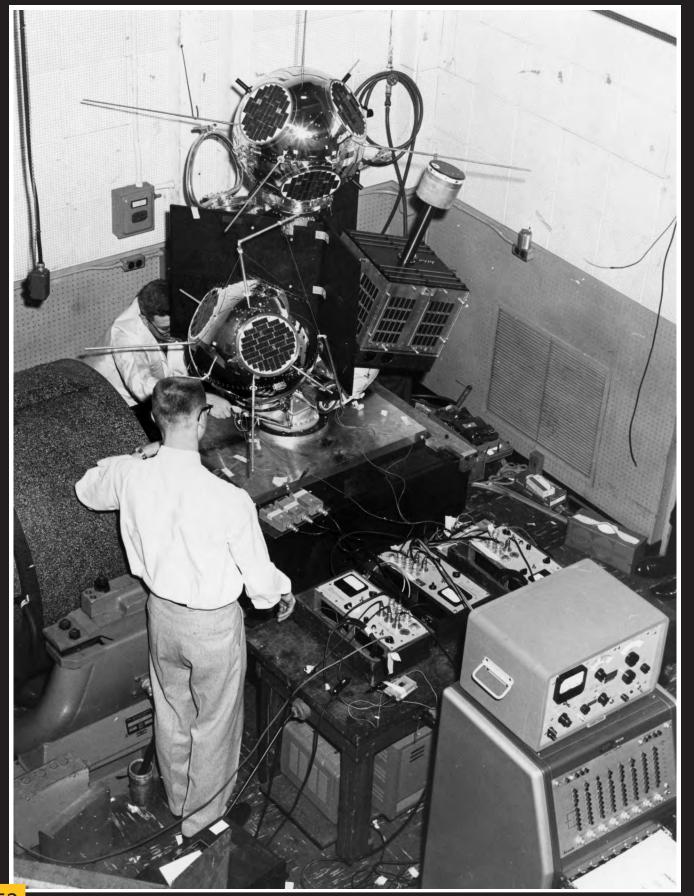
A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE



Samos

Samos prepared for launch.

49


The Galactic Radiation and Background (GRAB) satellites were generally less provocative and a electronic signals intelligence satellite was the safe means to gain access to denied areas. Data world's first successful reconnaissance satellite. collected by GRAB 1 supported the Strategic Air The Naval Research Laboratory (NRL) began the Command's mapping of Soviet air defenses and development of the GRAB satellite in 1958 under aided the U.S. Intelligence Community in assessing a classified project that was code named Tattletale. the threat of military radar development. The GRAB was the project's unclassified cover name GRAB 1 intelligence collection provided evidence and publicly described the purpose of the satellite that the Soviet Union could detect and defend as scientific research to measure solar radiation in itself against a U.S. nuclear attack, contradicting space, however the classified intelligence mission earlier National Intelligence Estimates (NIEs) that (Tattletale) was to detect pulsed-radar signal had concluded that the Soviets did not have emissions from Soviet air defense systems. The these capabilities. The payload carried by the NRL launched the first GRAB mission in June 1960 GRAB 2 satellite observed different portions of and for the first time, the U.S. was able to intercept the spectrum and enabled the National Security and analyze signals from Soviet air defenses deep Agency to characterize a powerful, new Soviet inside Soviet territory. The second successful GRAB system that was probably located at the Sary satellite was launched in June 1961. Shagan missile complex.

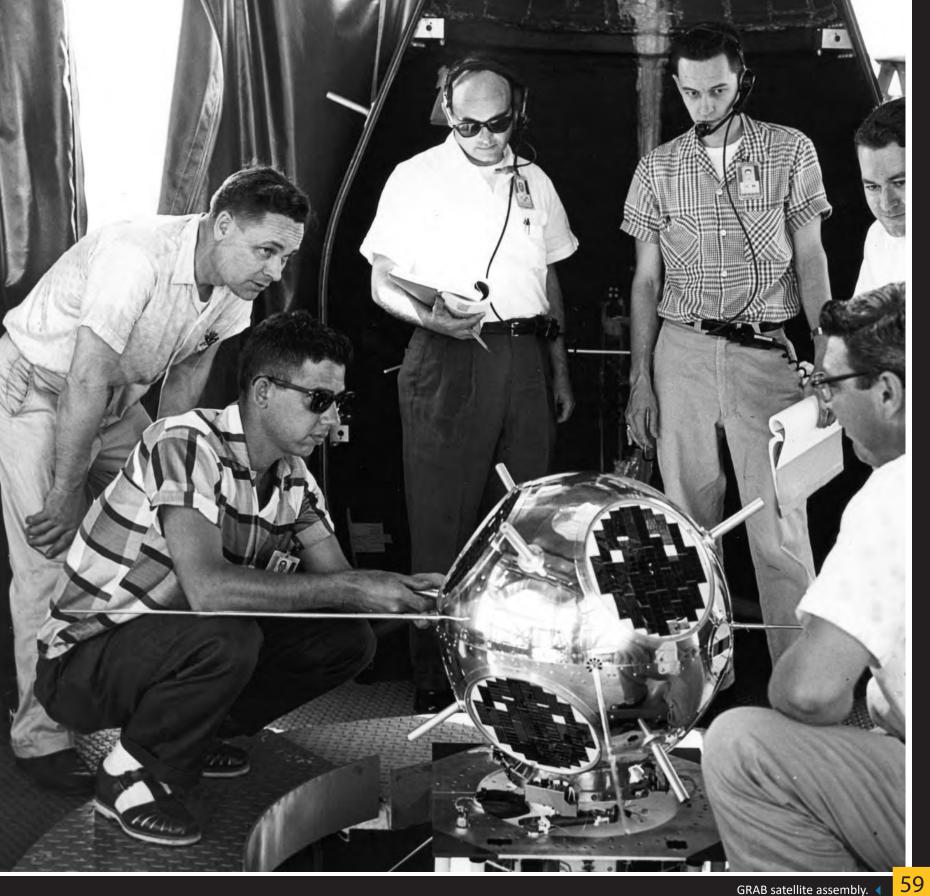
The GRAB concept originated in March 1958 The GRAB project became assimilated in the with Reid D. Mayo, an NRL research engineer, who National Reconnaissance Program and ultimately was investigating the problem of intercepting the NRO upon its establishment in September and analyzing Soviet air defenses systems. While 1961. The GRAB program ended in 1962 with two stranded during a blizzard at a Howard Johnson's successful missions and three failures. The NRL went Restaurant along the Pennsylvania Turnpike, Mayo on to develop a successor, Poppy, a larger and more began sketching illustrations and penciling range capable satellite. GRAB remained a secret to the calculations on a paper placemat. His idea was to public until its existence was declassified in 1998. modify the periscope mounted radar system from a submarine to a solid state version, so it could be placed inside a 20-inch solar powered Vanguard satellite. After returning to Washington, his idea took hold, and the NRL began initial development of the project. President Eisenhower approved the GRAB program in August 1959. In May 1960, iust four days after the Soviets shot down the U-2 plane piloted by Francis Gary Powers, President Eisenhower approved the first GRAB satellite launch, and just over one month later, on 22 June 1960, a Thor Able-Star rocket launched from Cape Canaveral carried GRAB 1 into orbit. While GRAB was the world's first intelligence satellite, it was also part of the nation's first "ride-share" program, being launched on top of Navy Transit navigation satellites.

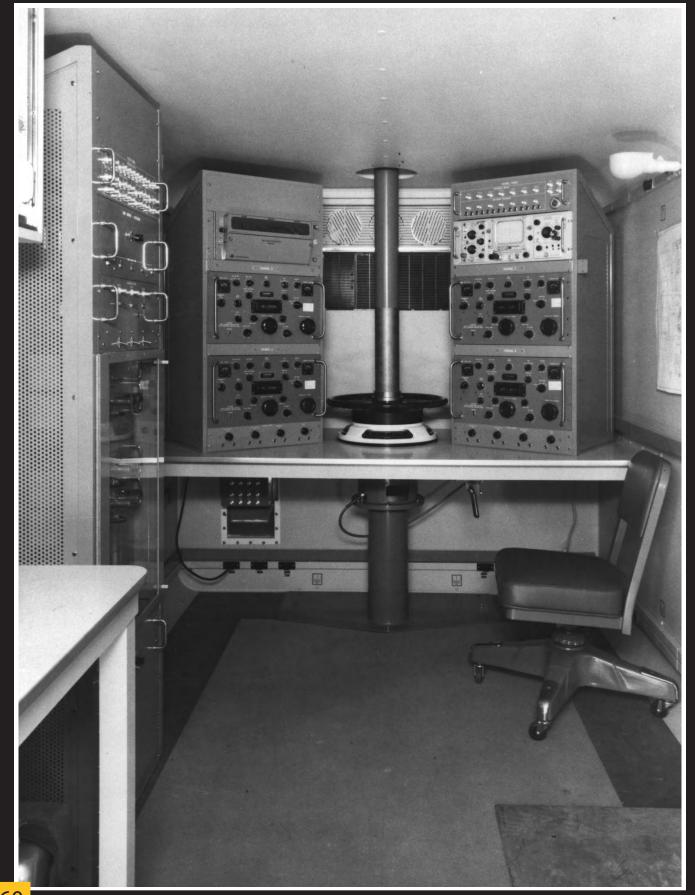
All preceding U.S. signals collection platforms, which were either airborne or ground-based, only could reach about 200 miles inside Soviet territory and were not only provocative, but inherently dangerous to the crews. Artificial earth orbiting

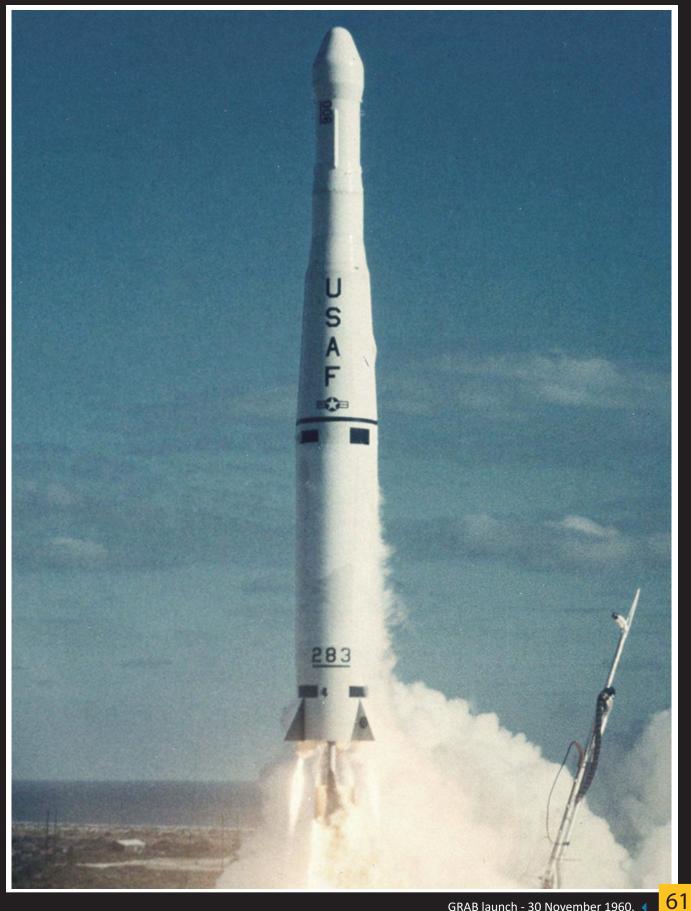
GRAB

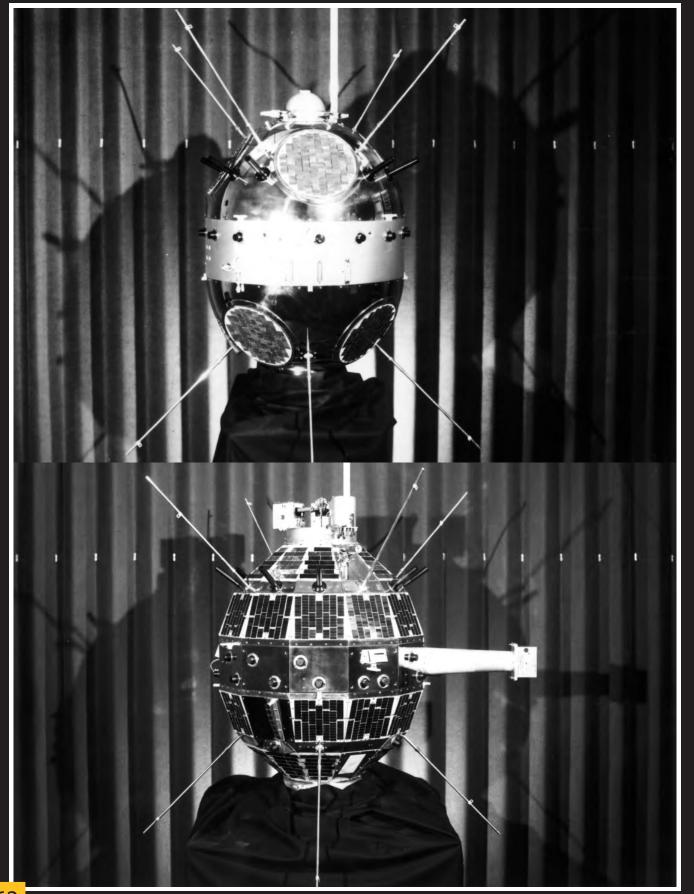
	SPECIFICATIONS
	Operational: 1960 - 1962
	Successful Missions: 2
	Size: 20 inches in diameter
	GRAB LAUNCH LIST
(GRAB 1
	22 June 1960 - Thor Able Star - Success
	30 November 1960 - Thor Able Star - Failure
(GRAB 2
	29 June 1961 - Thor Able Star - Success
	24 January 1962 - Thor Able Star - Failure
	26 April 1962 - Scout - Failure

GRAB - Thor Able Star - pre-launch. ┥




A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE





GRAB

GRAB

POPPY

13; delivered ocean surveillance information to The two successful GRAB satellite missions had demonstrated the value of using Earth orbiting Navy operational commanders; and, with data satellites to collect intelligence against the denied from the Corona imaging reconnaissance satellite, areas of the Soviet Union and other difficult furnished a more complete picture of the Soviet targets. The satellites provided significantly more military threat. We can credit these systems with data than was attainable by aircraft and ground helping the U.S. win the Cold War. At the same time, the satellites extended their impact into collectors, could reach deep into the country borders inaccessible by aircraft, did not endanger the future as they laid the foundation for future the lives of pilots and aircraft crews, and from a national reconnaissance capabilities. The NRO's diplomatic perspective, were far less provocative 21st-century signals intelligence reconnaissance than aircraft overflights. The volume and density capabilities grew out of the GRAB and Poppy of the information collected by the very first GRAB innovations of the 1960s and 1970s. The Poppy program operated from 1962 to 1977 with seven satellite was enough to overwhelm the existing U.S. analytical capabilities and stimulated the successful launches and missions. The fact of development of computer-aided approaches at Poppy's existence and limited details about it were the Naval Research Laboratory, National Security declassified in 2004; however, not all information Agency, and Air Force Strategic Air Command about Poppy has been declassified. (SAC).

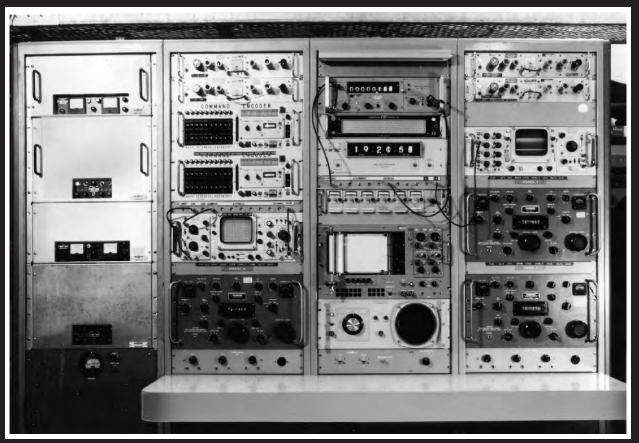
Recognizing the need for more capability, 1962 the NRL, which had been moved into NR Program C, developed a larger and more advance electronic signals intelligence (Elint) satellite as successor to GRAB. Known as Poppy, the satel featured two prominent designs - stretch spherical and multiface. The first Poppy missio featured the use of a stretched spherical desic measuring 20 x 24 inches and weighing 55 pound which as the program evolved, grew to 24 x inches and a weight of 129 pounds. Later Pop missions utilized a slightly larger 12-sided multifa design which initially measured 27 x 32 inches and weighed 162 pounds, and grew to 27 x 34 inches with a weight of 282 pounds. The NRL launched the first Poppy satellite on 13 December 1962, and in total the Poppy program launched and completed seven successful missions. The last Poppy mission was launched on 14 December 1971.

From an orbit of approximately 600 miles above the Earth, Poppy satellites intercepted Elint signals from radar sites throughout the Soviet Union and other areas. The intelligence derived from that data supported a wide range of applications and conclusions. It identified cues to the location and capabilities of radar sites within the Soviet Union; provided SAC with characteristics and locations of air defense equipment to support building the U.S. Single Integrated Operations Plan (SIOP)

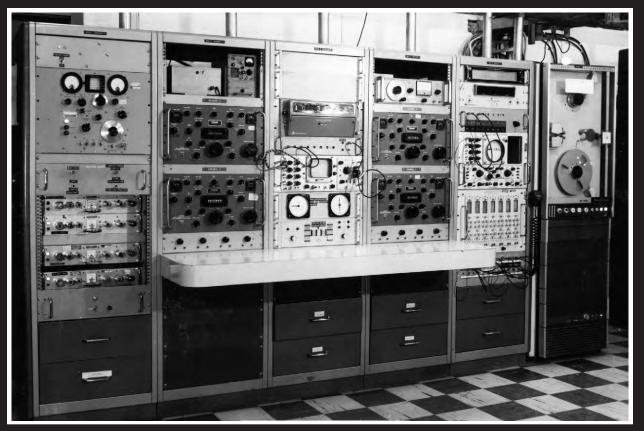
Poppy

i	n
)	's
e	d
	а
it	e
e	d
n	IS
	٦,
b	s,
3	2
р	y
c	e
n	d

Operational: 1962 - 1977 Successful Missions: 7 Size: 20 X 24 inches (stretched spherical)

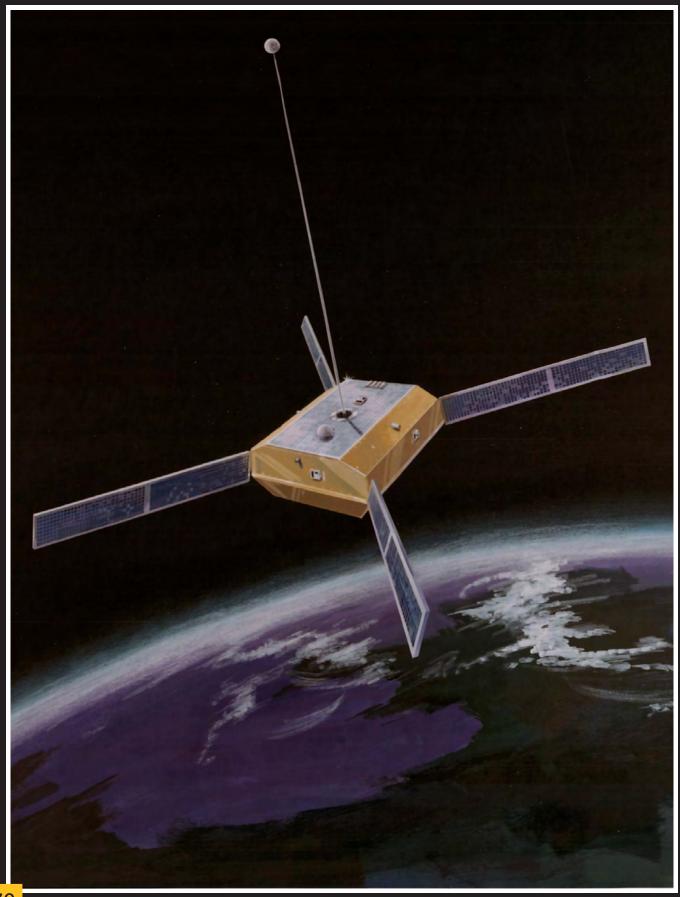

24 X 32 inches (multifaced)

POPPY MISSIONS		
Рорру 1	13 Dec 1962	THOR/AGENA D
Рорру 2	15 June 1963	THOR/AGENA D
Рорру 3	11 Jan 1964	THRUST- AUGMENTED-THOR/ AGENA D
Рорру 4	9 March 1965	THOR/AGENA D
Рорру 5	31 May 1967	THOR/AGENA D
Рорру б	30 Sept 1969	THORAD/AGENA D
Рорру 7	14 Dec 1971	THORAD/AGENA D



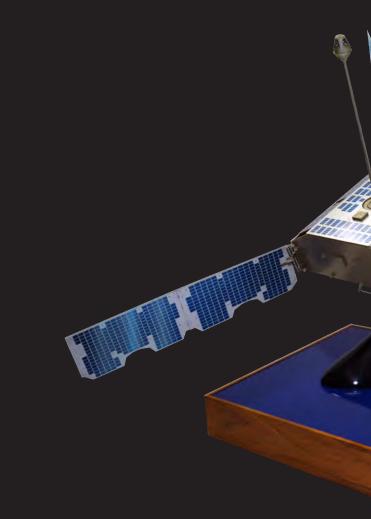
Рорру

> Poppy - transmitter console - November 1965.


> Poppy - receiving console A-GR-2800 - November 1965.

Poppy 3 satellite launch - 11 January 1964. ∢

Рорру



PARCAE AND IMPROVED PARCAE

After the success of the GRAB and Poppy signals Parcae and Improved Parcae were Low Earth Orbit electronic intelligence collection systems collection programs, and with increasing concerns that downlinked the collected data to ground about the Soviet Navy, the Naval Research Laboratory as part of the NRO's Program C, processing facilities located at selected locations around the world. Once received, the data was developed the next system that would collect the provided to the National Security Agency for needed information on the Soviet Union's naval processing and reporting to U.S. policy makers. fleet. That system, Parcae, was the programmatic follow-on to GRAB and Poppy. Later on, the NRO Launched from 1976 to 1996, under mission developed the next generation of Parcae, referred numbers 7108 to 7120, Parcae and Improved to as Improved Parcae, which added the capability Parcae were successfully operated by the NRO to collect against and recognize selected foreign until 2008. In July 2023, the Director, NRO communications systems. declassified the fact of the existence of the Parcae and Improved Parcae satellites in addition to limited details about their purpose.

Parcae

FILM RETURN SATELLITES

Although the first imagery satellites utilized In the early to mid-1950s, when the film return methods – a process that today seems rather primitive - the idea of near-real time photoreconnaissance and electronic transmission of photographs from space had been born and work begun on such systems in the 1950s, well before the first film return satellite ever flew. Near-real time satellites would become a reality in the mid-1970s with the introduction of the Kennen system, but film return satellites were operational and effectively used from 1960 until 1986. Film return satellites began flying several years prior to the first flight of the A-12 and SR-71 supersonic aircraft, both originally intended for photoreconnaissance and signals The film return method was a process where intelligence overflights of the Soviet Union and other denied areas, and the satellites continued to provide photoreconnaissance images for a decade after the launch and successful operation of the first near-real time satellites of the Kennen system. The United States developed and used three film return photoreconnaissance systems: Corona, Gambit and Gambit-3, and Hexagon.

requirements for photoreconnaissance satellites were first explored, nothing had yet been launched into space, so it was unknown how photographs could be returned to Earth for processing and intelligence exploitation. Over the following few years, work within the WS-117L and the early Samos program led to two primary options for returning the reconnaissance images, film return capsules and film readout in space processes. Eventually, the film readout option succumbed to the technology limitations of the time, and film return methods were matured and utilized on America's first photoreconnaissance satellites. intelligence photos taken in space were captured on film and stored in the satellite, then some days or weeks later, physically returned to Earth by way of a capsule jettisoned from the satellite, and subsequently captured by specially equipped aircraft and trained crews as it descended through the atmosphere. The method was effective at providing needed intelligence without the inherent risks and provocations associated with aircraft overflights of hostile nations and denied areas. However, the film return satellites did have drawbacks – the imagery was impacted by poor weather conditions on Earth, with clouds often obscuring images, and the satellites were not overly responsive to crisis events that necessitated real-time images.

First intelligence photo from space - Corona photo of Mys Shmidta Runway - 18 August 1960.

CORONA

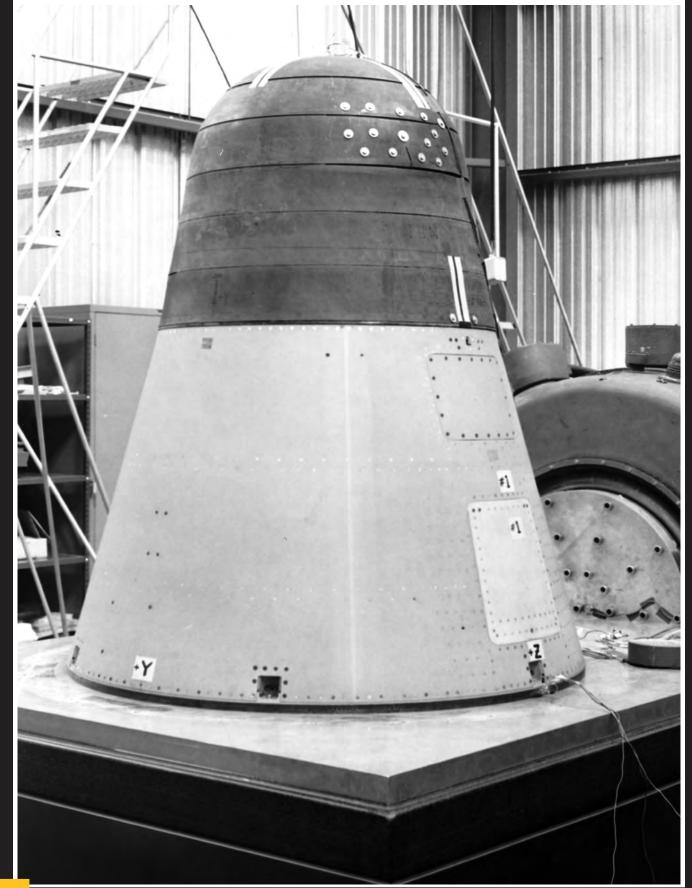
The Corona satellite, first successfully U-2 program had collected to that point) and had operated in August 1960, was the world's first imaged about 1.65 million square miles of Soviet photoreconnaissance satellite. Corona was territory. With the intelligence images from this originally intended to be a stop-gap effort, having mission, intelligence analysts began to dismantle been separated from the struggling Air Force the myth that the U.S. lagged behind the USSR WS-117L Samos program and given to the CIA to in missile production – the so called "missile gap" bring the capability to fruition, while the Air Force - and with additional imagery obtained on the continued efforts to develop the film readout and second and third Corona missions, analysts had other capabilities of Samos. Corona, was intended the information necessary to dispell the missile to operate for two years, until the much larger gap concerns. The imagery showed the Soviets and complex Air Force WS-117L Samos satellite had far fewer strategic missiles and launch sites could take over photoreconnaissance missions. than was previously thought. However, Samos experienced grave technical Corona's first imagery obtained a ground problems, and by 1963 the photo-reconnaissance resolution of about 35 feet, but by the time the aspects of the Samos program had been cancelled. program ended the ground resolution had been Corona continued to operate well beyond its reduced to around 7 feet. Over the 145 missions projected two-year life, and when the program of its operational life the Corona system imaged was terminated in 1972, Corona had flown for a all Soviet medium-range, intermediate-range, total of 12 years.

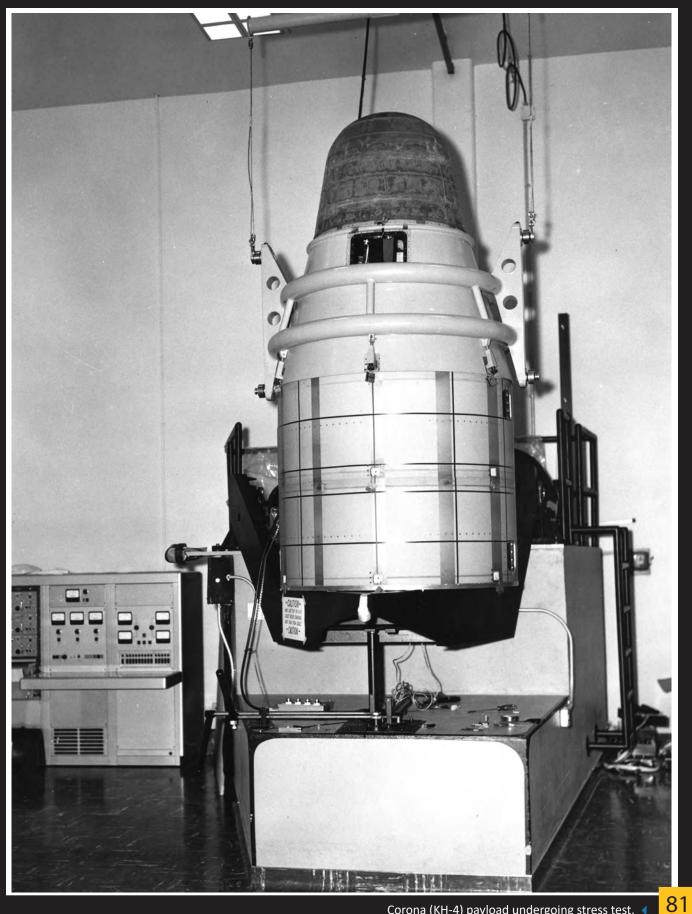
Known to the public as the Discoverer satellite program, with the objective of conducting experiments in space to aid in the mission to put man into space, the Corona satellite's true, but classified, mission was to put cameras into space to obtain intelligence photos of the Soviet Union and other denied countries. Corona was a complex system that used new technology and proved quite challenging to develop. Given the difficulties within the WS-117L program and the need for photoreconnaissance intelligence of the Soviet Union, President Eisenhower put significant pressure on the CIA to make the Corona system an operational reality. However, throughout 1959 and early 1960 success was difficult to achieve; the first thirteen attempted launches failed for one reason or another. With each failure more was learned about the launch vehicles, the satellite, or the recovery system, and the information applied to future launches until finally, the 14th launch attempt (Discoverer Mission XIII) was successful; the return capsule was recovered, but as a test vehicle it carried no camera or film. The first fully successful mission to return photoreconnaissance images, Discoverer XIV, was launched on 18 August 1960 and recovered the next day over the Pacific Ocean near Hawaii. This first mission returned 3,000 feet of film (more than the entire

Corona's first imagery obtained a ground resolution of about 35 feet, but by the time the program ended the ground resolution had been reduced to around 7 feet. Over the 145 missions of its operational life the Corona system imaged all Soviet medium-range, intermediate-range, and intercontinental ballistic missile launching complexes. Using Corona imagery, analysts were able to discover the main Soviet construction site for ballistic-missile-carrying submarines at Severodvinsk. In total, the Corona missions produced over 800,000 images from space, a collection containing more than 2.1 million feet of film in 39,000 film canisters. As America's first eyes in space, Corona helped win the Cold War by revealing and monitoring potential threats to U.S. national security. The Corona program and all Corona imagery was declassified in 1995.

76 C-119J loadmasters Corona recovery crew - 1960. Corona

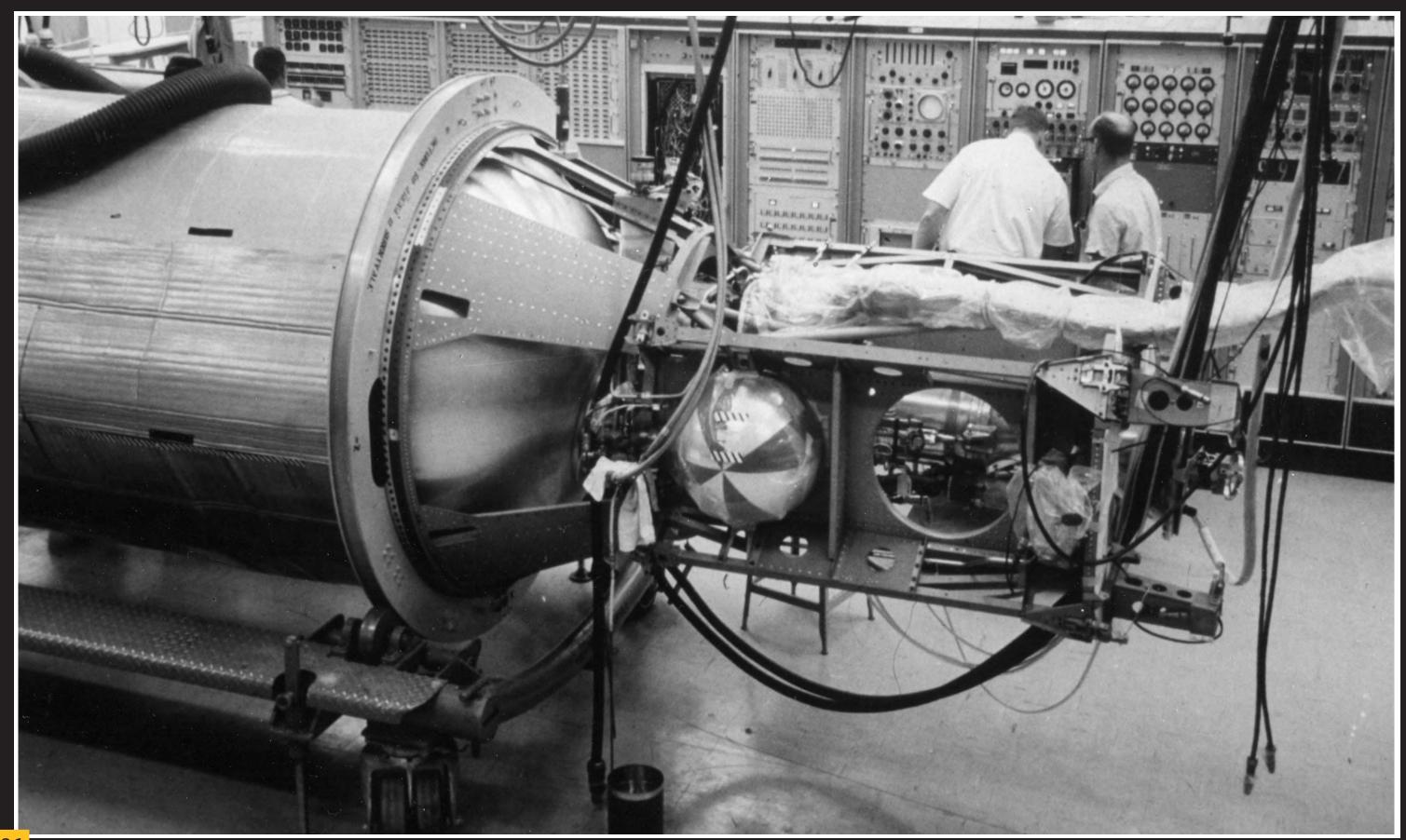
A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE




Film Return Satellites

Corona

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE



A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

> JC-130 aircraft recovering parachute with test payload.

Corona

> Corona recovery diver retrieving Discoverer XIII capsule, 11 August 1960.

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

C-119J recovering floating capsule 1960.

Corona recovery crew transport Corona capsule. <

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

First Recovery, Hayraivan Phase averaft 18042', 12 December 58 Aircraft ammander; Captain Warren Selensted! Barry Crew 7/SCT Lechard Champion 5/SGT Biely D. andersen SISGT Matriar V arrayon A/20 Church Dorigan A/30 Hector Santana ▶ Fragment of first test parachute recovered in Hawaii and signed by recovery team - 12 December 1958.

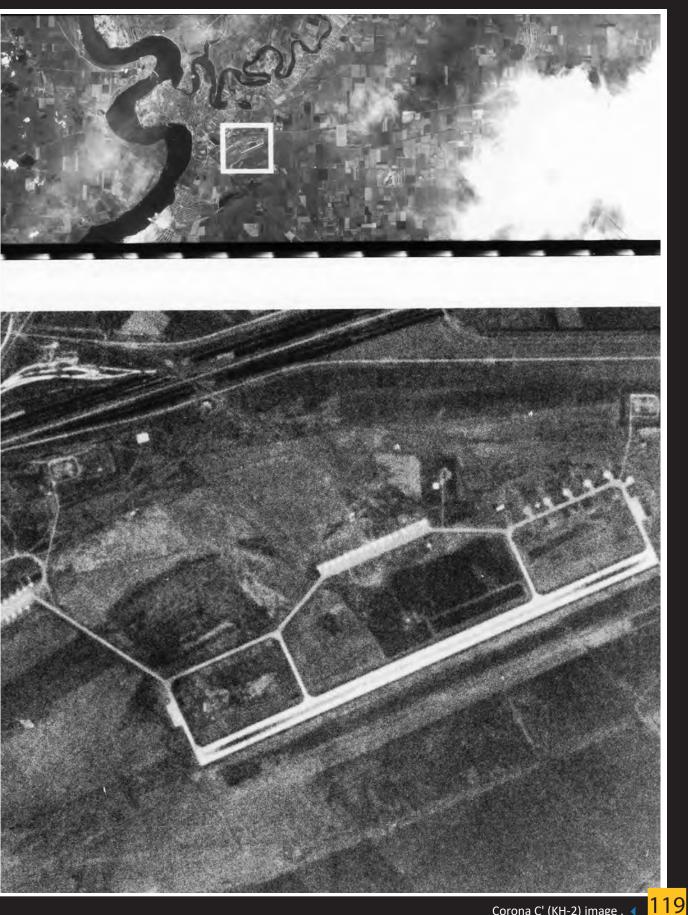
A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

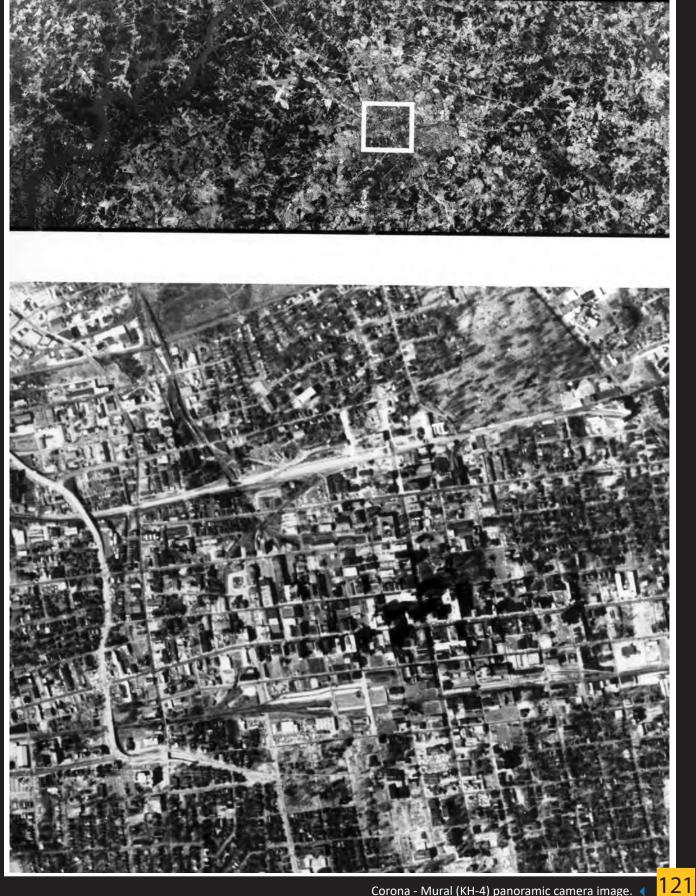
The arrival of Discoverer 14 film capsule (within the metal container) at Hickam AFB on 19 August 1960. $\overline{107}$

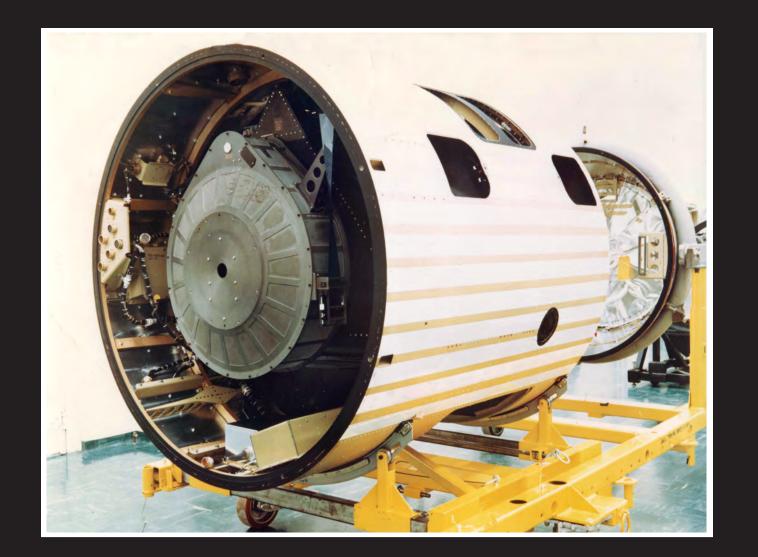
Film Return Satellites

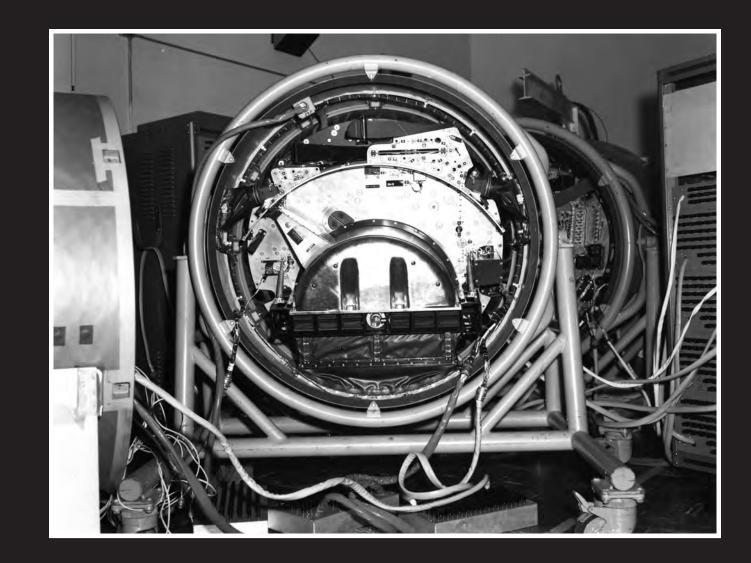


A2C Daniel Hill during the Discoverer 14 publicity tour.

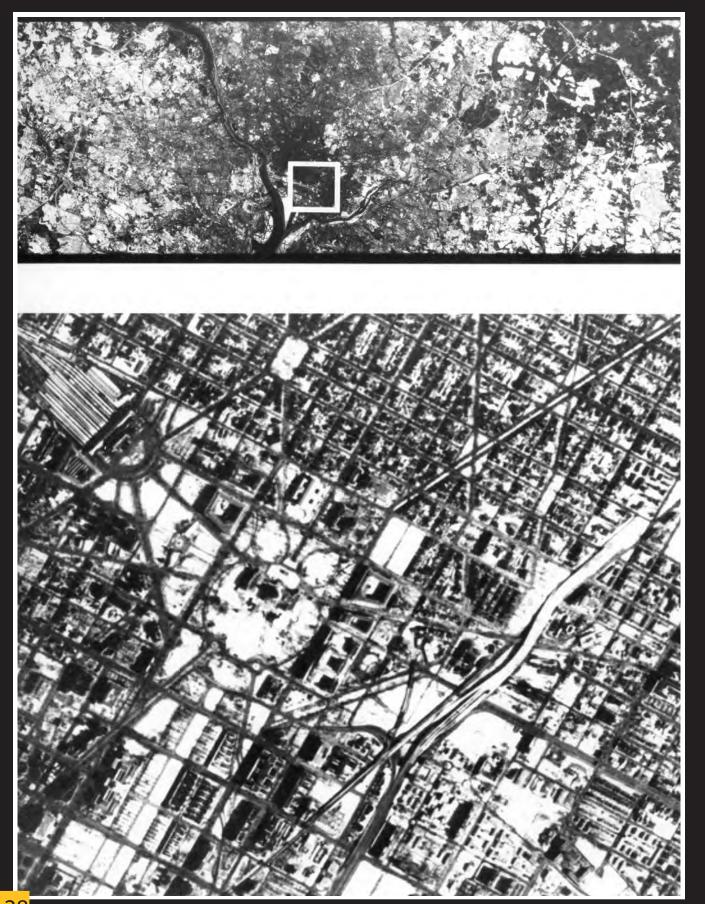


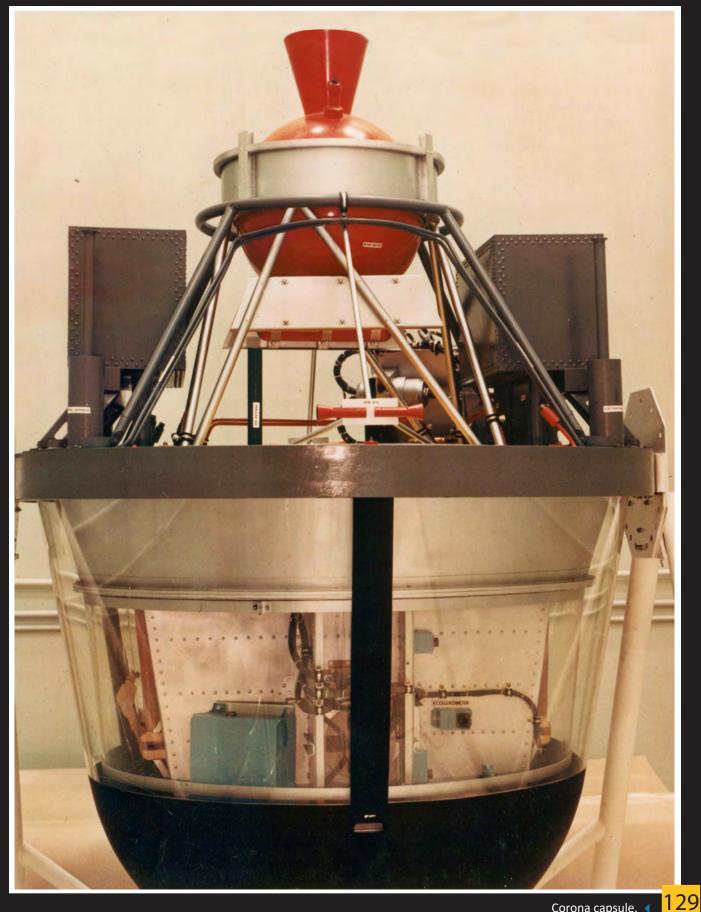






Corona - Mural (KH-4) panoramic camera image. ∢





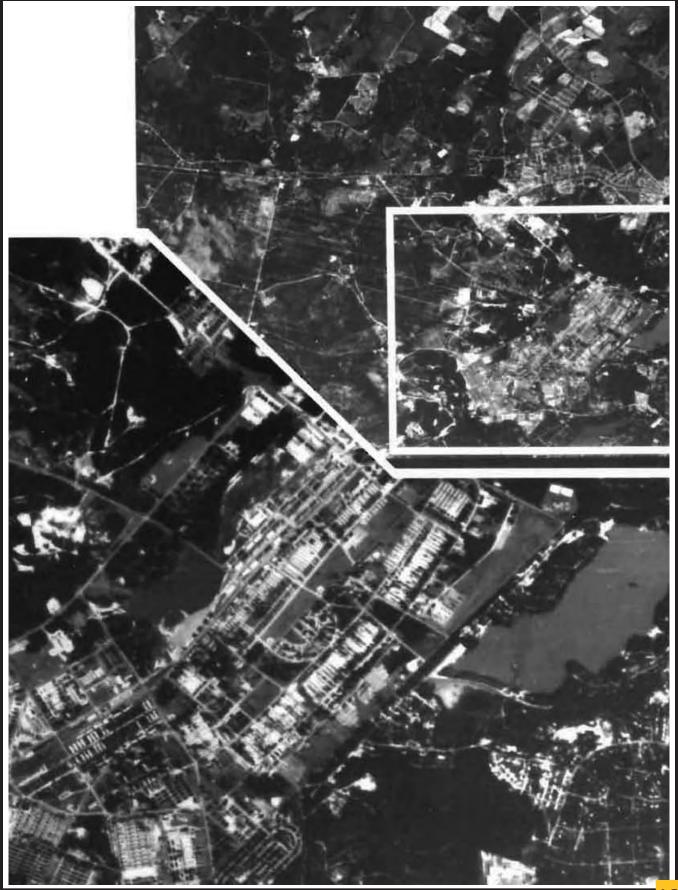
A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

Corona (KH-4B) payload. ┥

128 Corona-Janus - J-1 (KH-4A) image - 19 January 1965. Corona

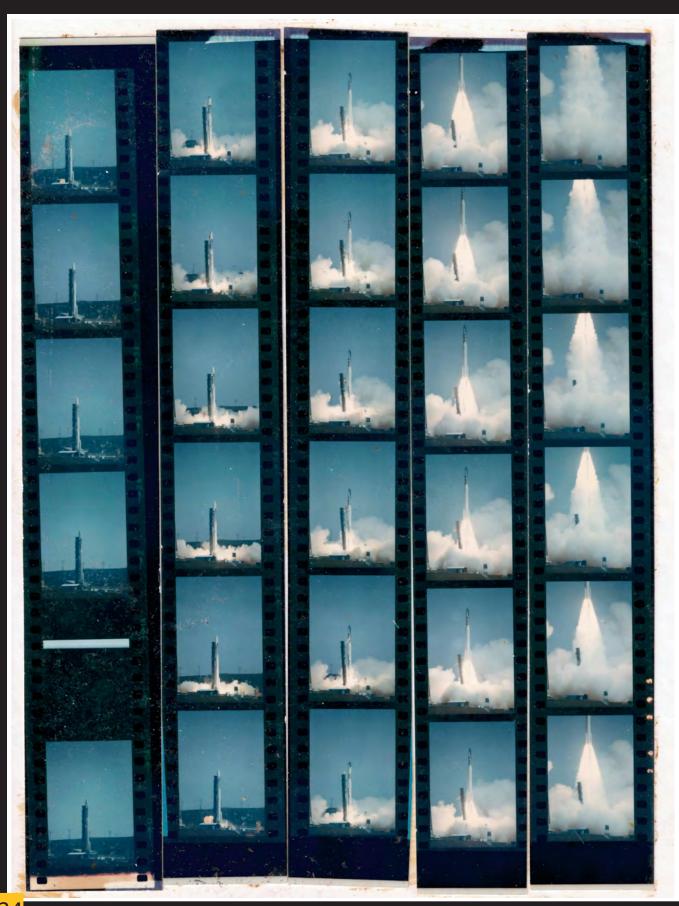
Corona capsule. ┥

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE



C-130A flight crew at Edwards AFB - 1960s. 🧹

6593d flight crew in front of JC-130 aircraft . 📢 131


Corona-Janus - J-3 (KH-4B) panoramic camera image.

Corona

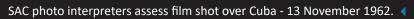
A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

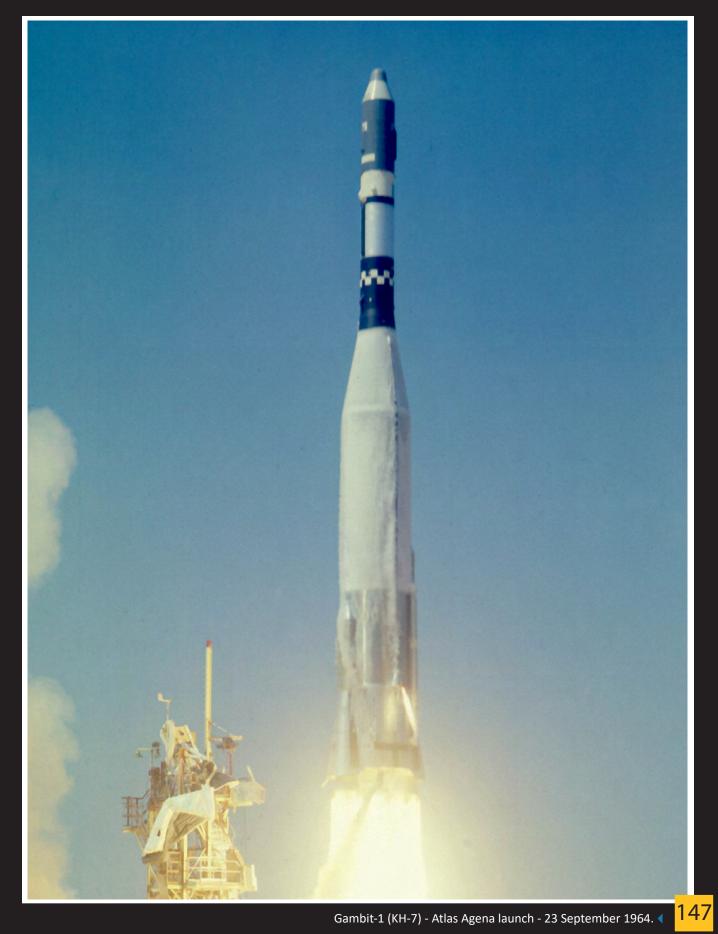
Corona-Lanyard-KH-6 camera image - 20x enlarged. 🔳

134 Corona (KH-4B) launch photo contact sheet.

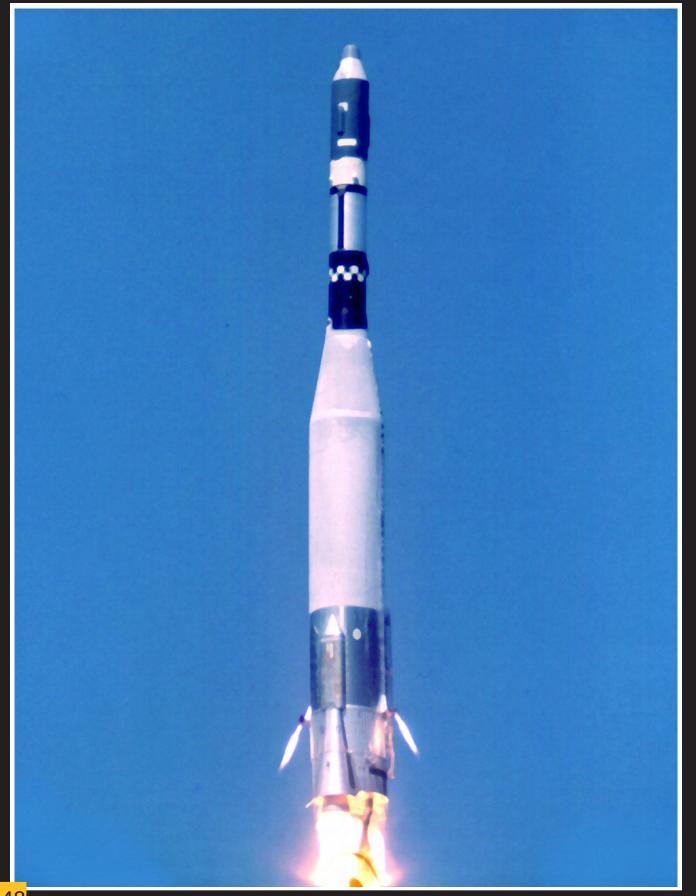
Original 6593d Test Squadron Patch - 1958 - 1960. 🧃

Official 6593d Test Squadron Patch - July 1961.

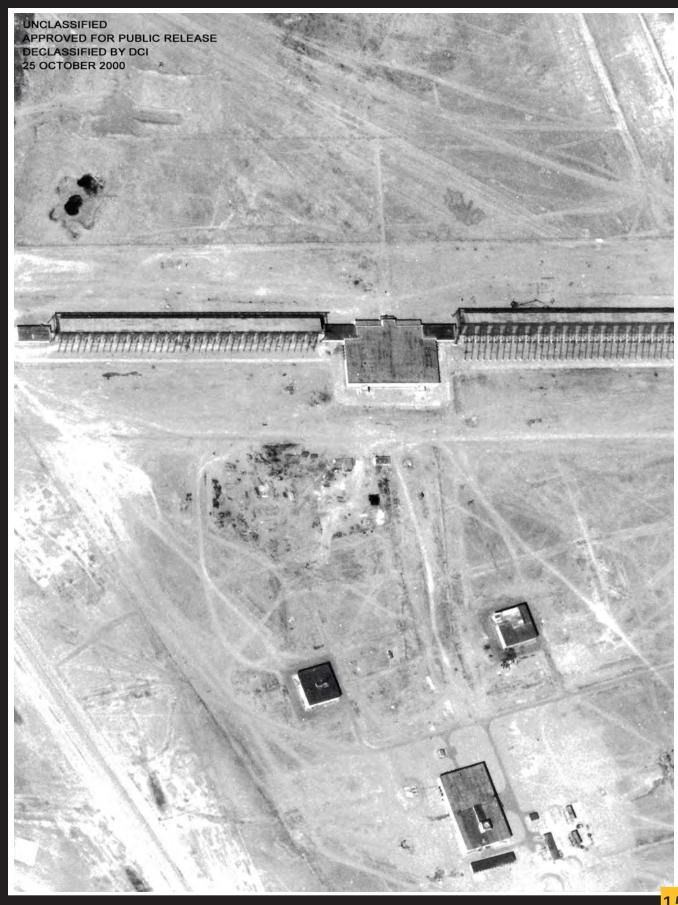



Gambit was the first operational high resolution film-return photoreconnaissance satellite. One week after the first successful Corona mission in August 1960, President Eisenhower approved the development of the Gambit satellite system. First launched in 1963, its 77-inch focal length lens produced ground resolution imagery of two to three feet, providing analysts with detailed information about intelligence targets for the first time. The second, later version of this highresolution system, Gambit-3, was equipped with a 175-inch focal length lens that could acquire imagery with ground resolution better than one foot. The NRO operated the first Gambit-3 in 1966 and then launched a dual-recovery vehicle version in 1969. The NRO continued to introduce additional improvements, such as better roll-joint capability, a new parachute thermal cover, and a dual platen camera for later Gambit-3 missions.

Gambit-1 completed 28 successful missions, with each carrying 3,000 feet of film and having a mission life between one and eight days. Gambit-3 completed 50 successful missions and carried up to 12,241 feet of film on each flight. Gambit-3's average mission life was 31 days and its longest mission was 129 days. In addition to providing invaluable contributions to national security, the Gambit photoreconnaissance systems saved the U.S. billions of dollars in weapons development costs. The imagery provided by the Gambit missions uncovered the weapons capabilities of U.S. adversaries and enabled the U.S. to design cost-effective counter weapons.


The Gambit systems operated from 1963 to 1984 providing the U.S. with exceptional high resolution capabilities from space for more than two decades. The majority of the Gambit system was declassified in 2011, although a few limited details remain classified.

Gambit

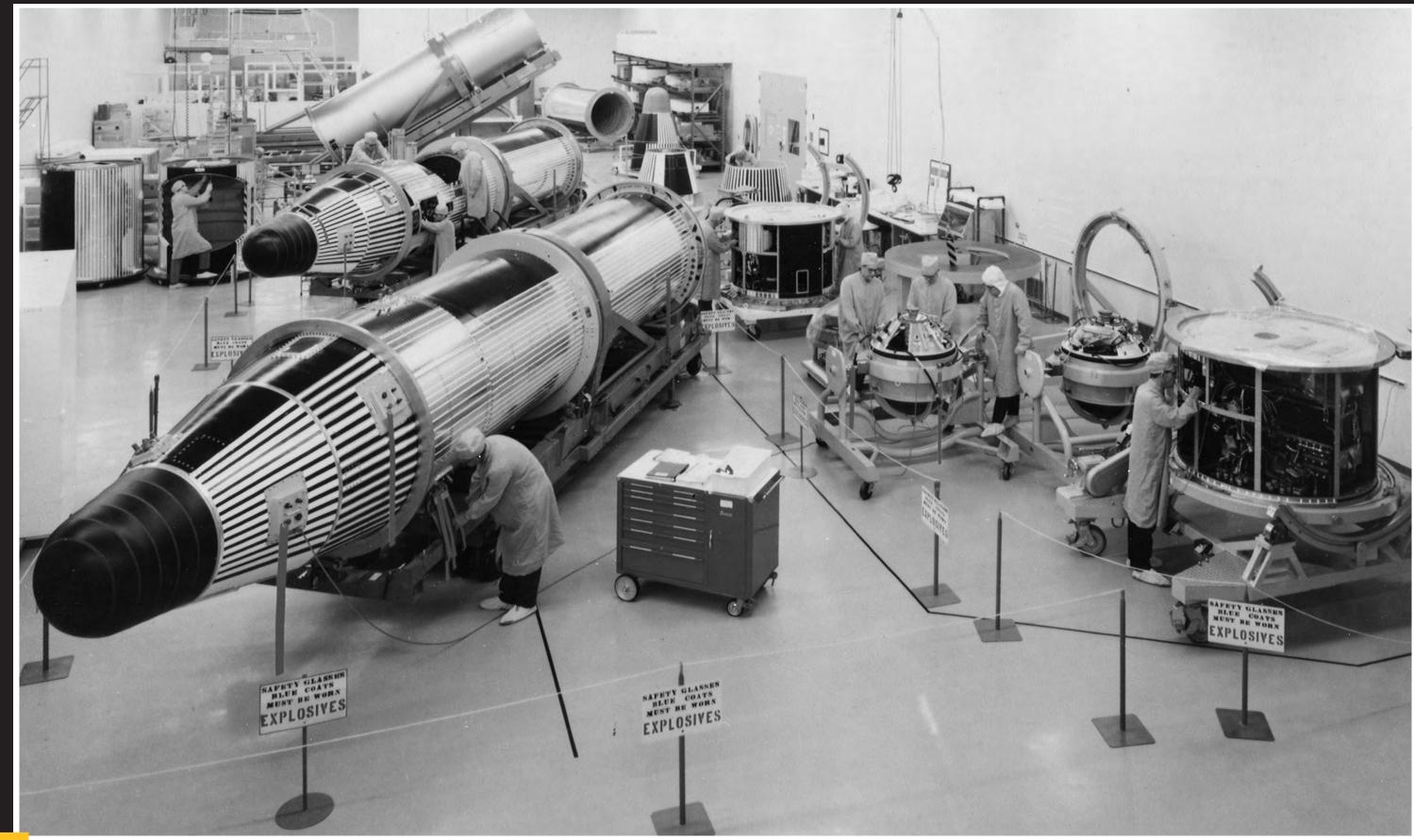


Gambit

Gambit-1 (KH-7) image of the U.S. Capitol - 19 February 1966. <

Gambit-1 (KH-7) image of a Space Tracking Radar Facility - 25X - 28 May 1967.

Gambit



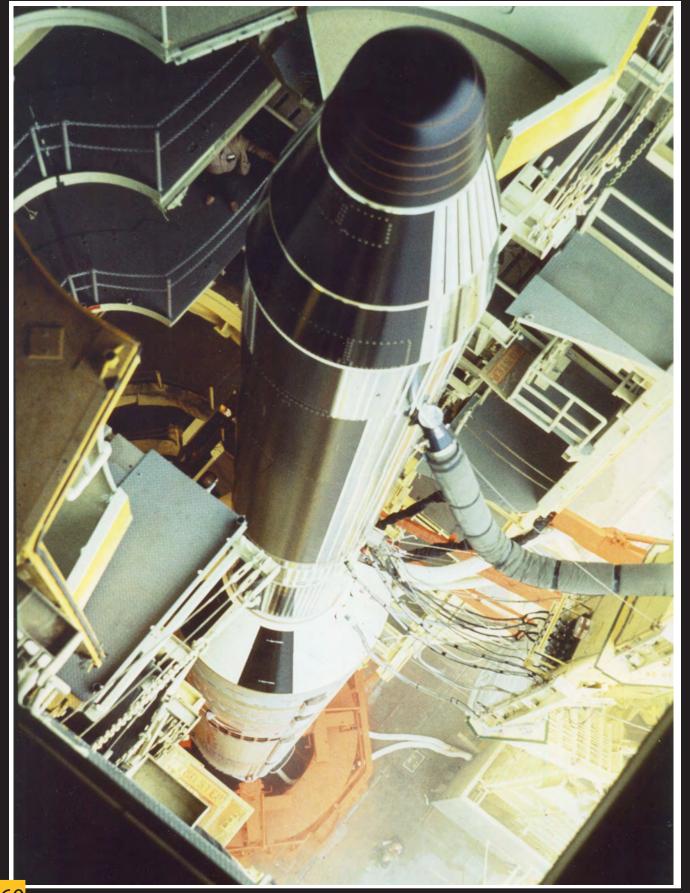

152 ▶ Gambit-1 (KH-7) image of a Plesetsk ICBM Complex - 9 June 1967. Gambit

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

Gambit-3 (KH-8) satellite assembly. 🔨

Gambit

156 ▶ Gambit-3 (KH-8) - Titan Agena launch - 14 December 1965. Gambit



Gambit

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

Gambit-3 (KH-8) launch. 📢

Statement of the second se

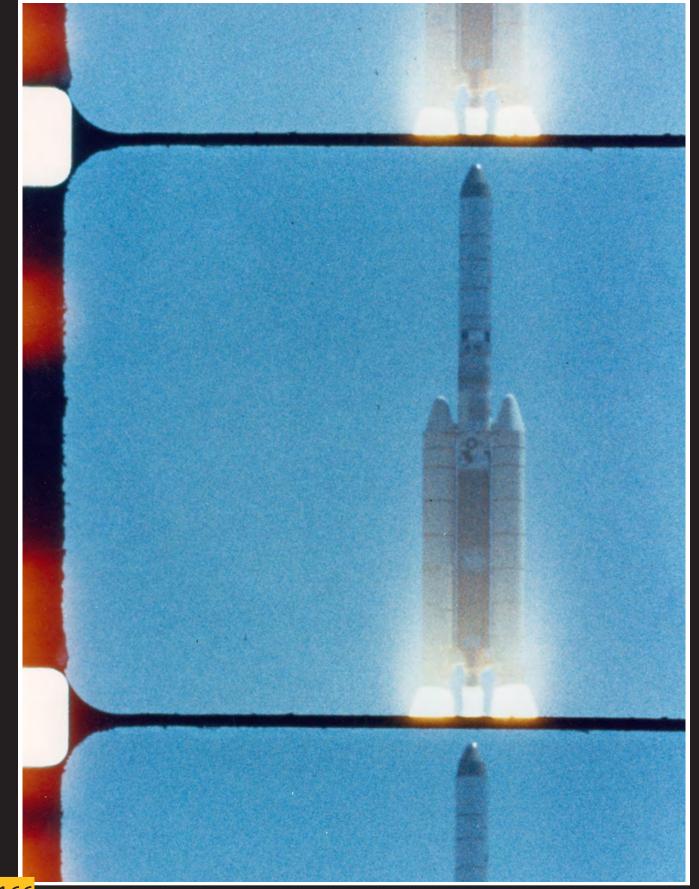
160 • Gambit-3 (KH-8) integrated with Titan IIIB Agena on launch pad.

Gambit

Gambit-3 (KH-8) image of a Typhoon Class submarine - 10 October 1982.

Gambit

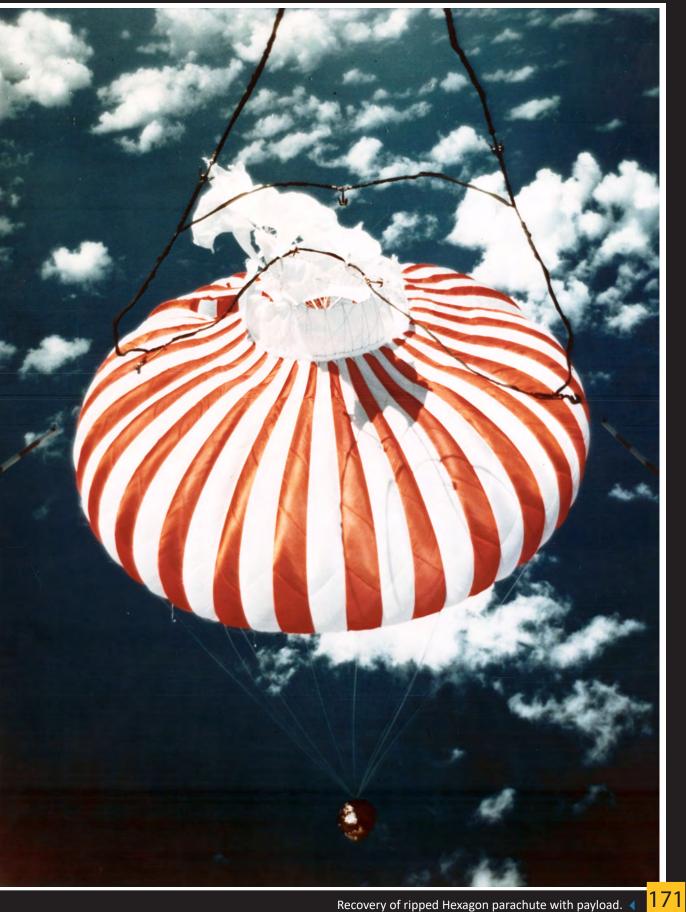
C-130 aircraft recovering parachute with Gambit satellite payload.



HEXAGON

Throughout its operational life, Hexagon Hexagon was the last operational U.S. filmplayed a prominent role in U.S. national security. return imagery satellite system. It was an advanced Hexagon satellites served as one of the key national wide-area search and mapping satellite system that technical means that the U.S. used to monitor the was intended to replace both the wide-area search capabilities of Corona and the high resolution Soviet Union's compliance with the Strategic Arms surveillance capabilities of Gambit. The optical Limitation Talks Agreement. Hexagon also acquired intelligence about adversaries' strategic weapons components of Hexagon were not able to improve upon the ground resolution already available within deployment and industrial and agricultural production. Hexagon continued this invaluable the Gambit system and ultimately led to the decision to use Hexagon as the wide-area search satellite intelligence service until 1986 when, after 19 successful launches, the 20th and last Hexagon to replace Corona. Although Hexagon first flew in 1971, the program officially began in 1964 at the satellite was lost during a launch explosion bringing Central Intelligence Agency when its first concepts to an end the era of film-return satellites. The Hexagon program was declassified in 2011. were proposed and work started. Hexagon's innovative capabilities enabled up to four recovery capsules, extended mission life, and improved ground resolution for collecting mapping data and intelligence information of strategic importance to the U.S.

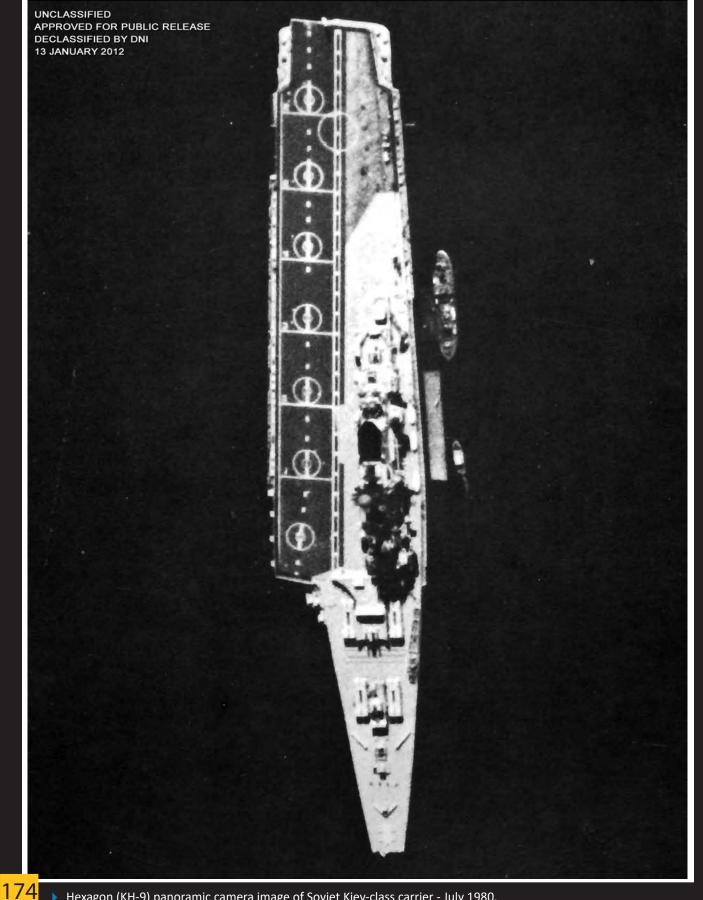
Much larger than either the Corona or Gambit satellites, the Hexagon vehicle was nearly 60 feet in length (the size of a locomotive engine) and weighed around 30,000 pounds. It carried two mission camera systems—a panoramic camera to search for intelligence targets and a mapping camera to gather mapping data. The panoramic camera's wide-area search capabilities could image a ground distance of 370 nautical miles, roughly the distance between Cincinnati, Ohio and Washington, DC. The mapping camera used terrain and stellar cameras, and a separate recovery bucket; allowing the mapping camera to operate independently and at the same time as the panoramic camera system. Hexagon missions carried between 175,000 and 300,000 feet of film and the later missions could remain in orbit for more than 200 days.



168 > Hexagon (KH-9) mapping camera image of Kubinka Airfield - 40X - 6 April 1979.

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

Hexagon Mark VIII recovery parachute and film canister.


Hexagon

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

> Hexagon (KH-9) mapping camera image of Moscow - 10X - 6 April 1979.

Hexagon

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

Hexagon (KH-9) panoramic camera image of Deep Space Tracking Antenna, Simferopol - September 1982.

FILM RETURN SATELLITE SPECIFICATIONS

 CORRONAL
 1960 – 1972

 Image: Correction of the state of

Corona KH-1, KH-2, KH-3

CAMERA SYSTEM CHARACTERISTICS

• Lens: 24 Inch Focal Length

• Film Payload: 1,200 to \approx 5,000 Feet

• Resolution: 20 - 40 Feet

One Film Recovery Capsule

H-4, KH-4A, KH-4B				
CAMERA SYSTEM CHARACTERISTICS				
Lens: 24 Inch Focal Length				
• Film Payload: \approx 5,000 to 48,000 Feet				
• Resolution: 6 - 10 Feet				

One or Two Film Recovery Capsules

GAMBIT-1

OPERATIONAL 1963 – 1967

Gambit-1/KH-7

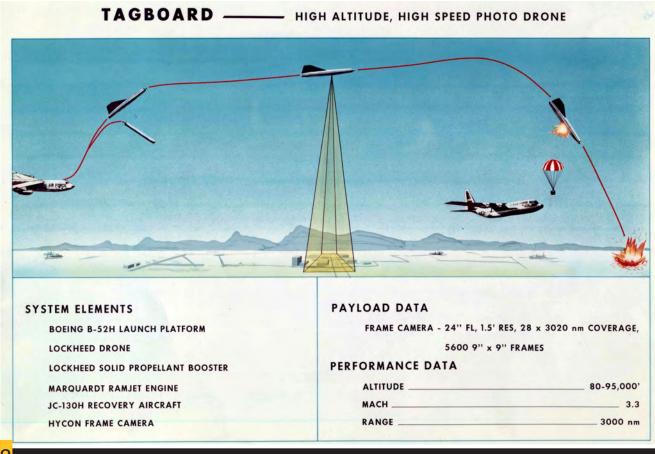
- **CAMERA SYSTEM CHARACTERISTICS**
 - Lens: 77 Inch Focal Length
 - Film Payload: 3,000 Feet
 - Resolution: 2 3 Feet
 - One Film Recovery Capsule

GAMBIT 3 OPERATIONAL 1966 – 1984

 KH-8
 KH-8
 KH-8

 (1966-69)
 (1969-72)
 KH-8

Gambit 3/KH-8 - 1966 - 1984	
CAMERA SYSTEM CHARACTERISTICS	
Lens: 175 Inch Focal Length	
• Film Payload: Up to 12,200 Feet	
 Resolution: Better Than 1 Foot 	


One or Two Film Recovery Capsules

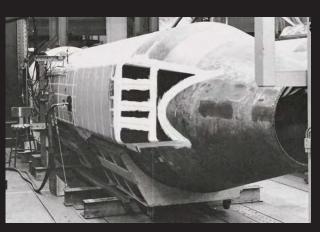
One Film Recovery Capsule

B-52 with D-21B under each wing.

EXPERIMENTAL PROGRAMS

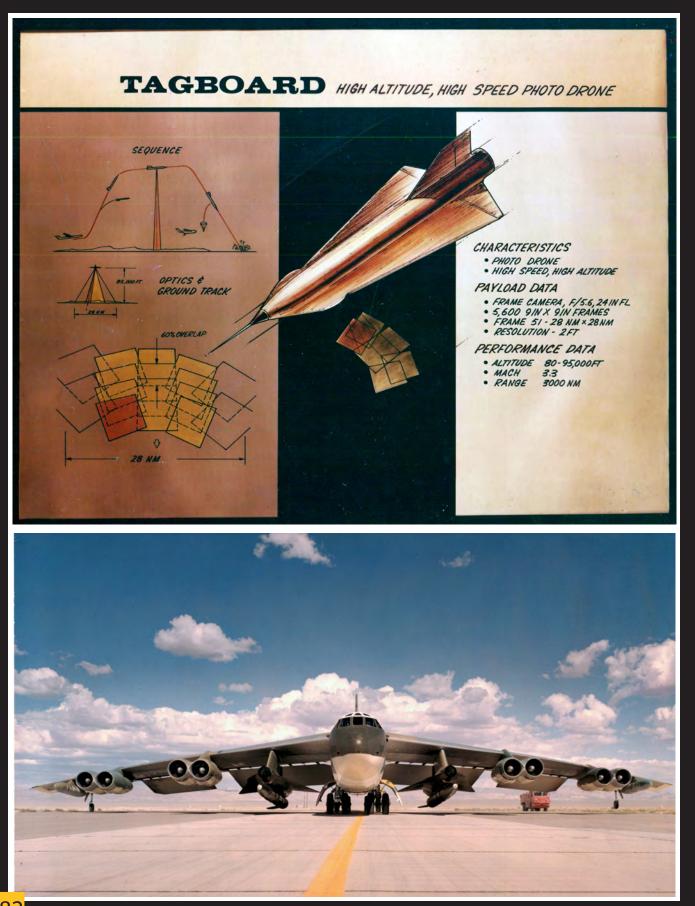
It can be difficult to imagine that failure is often such is the case with Quill, one of the NRO's very the foundation on which success is built. When early experimental programs. Some experimental something has never been done before, risks must programs will be successful, others will not, but be taken to achieve goals and repeated failures what is critical is that failures lead to learning, and contribute to learning. For example, the Corona that those lessons are applied to future activities. program experienced 13 failures in a row before Over the years, the NRO has had several achieving the first successful mission. Each failure experimental programs to develop and test resulted in learning and brought adjustments and new and different approaches to achieving the corrections that were applied to the next attempt mission, or to test cutting edge technology in our maiden guest to use space and satellites that will create new vehicles for collecting for collecting imagery intelligence. On the other intelligence information of our adversaries. hand, it is difficult to accept that a program is Three of NRO's early experimental programs successful from the start, but is then quietly were Quill, the D-21 Drone, and the Manned shelved and not put into service until decades Orbiting Laboratory (MOL). later while other elements of the program mature;

QUILL


In April 1960, the U.S. Army unveiled pictures As with many highly classified programs of of American cities that had been taken at night the era, at the conclusion of the work, all of the and through cloud cover using a synthetic equipment was either destroyed as part of security aperture radar (SAR) system mounted inside a protocols or repurposed onto other programs, small aircraft. Realizing the potential of radar therefore no physical artifacts remain of the Quill imagery, the U.S. Air Force was very interested in program, and only one photo of the satellite learning if this new technology could be used in vehicle is known to exist. Bradburn achieved the conducting battle damage assessments without rank of Major General and became the Director waiting for appropriate weather conditions that of NRO's Program A. On 27 November 2009 the were favorable to other optical sensor platforms. Director of National Intelligence approved the This emerging technology, which traces back to declassification of the fact of Quill as a 1964 World War II radar navigation systems, received NRO experiment in radar imagery. However, the significant interest from people and organizations majority of other information about the Quill involved in reconnaissance activities. program remains classified.

In late 1962, the Director of the NRO, Dr. Joseph Charyk, directed Major David D. Bradburn (USAF) to lead project Quill. The project was an experimental effort within the NRO to determine if the collection of usable synthetic aperture radar imagery from satellites was feasible. The Quill project was purely a test of technology and not intended to be an operational program that would subsequently build a series of satellite collection platforms.

Bradburn successfully paired off-the-shelf equipment and technology with experienced personnel from Goodyear Aerospace and the Lockheed Missiles and Space Company to quickly and efficiently get the satellite off the ground. Quill was designed to collect radar returns on tape spooled within the satellite and then transmit the data back to collection sites on earth. The first and only Quill radar satellite was launched on 21 December 1964. The satellite worked so well that a second planned launch was cancelled because all of the original program objectives had been met during the first launch.


The Quill project was a resounding success. At the conclusion of the Quill flight, it was found that usable synthetic aperture radar imagery could indeed be collected from satellites; although at the time, the resolution of the Quill imagery was relatively poor, and it still would be many years before the Intelligence Community would be able to build a usable radar satellite. Due to the limited scope of the experiment and Bradburn's leadership, Quill was the only early NRO program to be completed on time and under budget. Quill

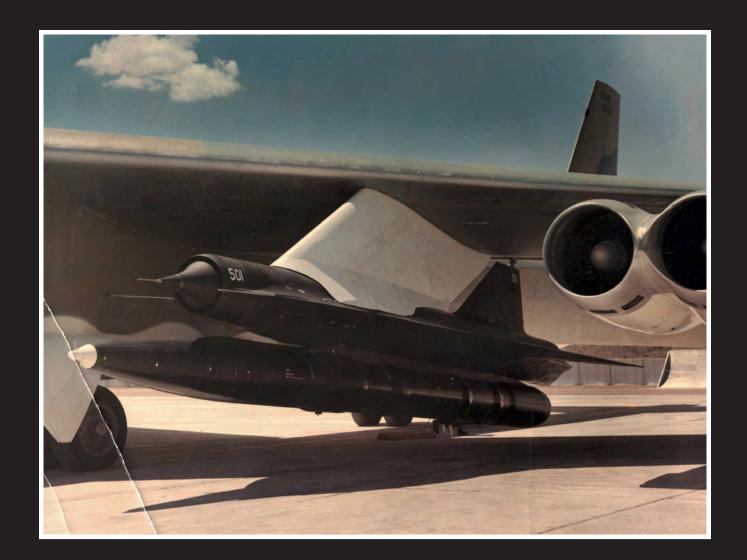
Launch: 21 December 1964 Number of Launches: 1	
Number of Launches [,] 1	
Number of Edditeries. T	
Mission duration: 96 Hours	
Manufacturer: Lockheed & Goodyear	

Unfortunately the small poor quality photo above is the only surviving photo of the Quill radar satellite.

D-21 DRONE

In October 1962, the CIA authorized Lockheed The D-21 drone incorporated many design features to develop a highly-advanced, remotely piloted, of the A-12, including the use of non-metallic supersonic reconnaissance aircraft, known as components and insulated fuel propulsion parts the D-21. The drone aircraft was designed by to help reduce infrared detection. However, Lockheed's "Skunk Works" engineering division after several test flight failures and the drone's to conduct high-altitude surveillance missions mission becoming less essential, the program was over exceptionally hostile territories. Launched cancelled in 1971. from an airborne carrier "mothership," the D-21 was powered by a Marquardt ramjet engine th propelled it at speeds over 2,000 mph (Mach 3 The Lockheed M-21 Blackbird motherships us the previously designed A-12 base aircraft the were then re-designated as M-21s when the D-"daughter" drones were carried on top.

During a reconnaissance mission, the Dwould follow a pre-programmed flight path ov areas of interest. The drone would then return international airspace, where the reconnaissar package, equipped with its own parachute, wou eject and be recovered in mid-air by specia equipped aircraft or at sea by ships. Shortly af the film package was jettisoned, the drone wou self-destruct.


One of the two M-21 motherships was lost a D-21 testing launch accident in 1966 that kill the Launch Control Officer. The M/D-21 proje was canceled after just four flight tests, but t D-21 drone was further adapted in the late 196 to be launched from B-52H bombers. This la version, designated D-21B and paired with a large solid-propellant rocket for launch, flew the or operational missions. D-21Bs were used on fe operational flights over Asia, but none of the missions fully succeeded. Skunk Works built drones, but the U.S. Air Force canceled the progra in 1971 and put the remaining D-21s in stora until decades later when several were placed various museums around the country.

Begun in the early 1960s by NRO's Program the D-21 was a ramjet-powered pilotless dror designed to be launched from the back of a modified A-12 and fly even higher and faster than the A-12. After a fateful accident involving one of the modified A-12s, the design was altered to be launched from under the wing of a modified B-52, which was less dangerous to the carrier aircraft.

D-21 Drone

D-21 Technical Notes:
Construction: Titanium with small radar cross section
Propulsion: One Marquardt RJ43 ramjet of
12,000 pounds thrust
Solid propellant rocket booster
Maximum speed: 2,000+ mph (Mach 3+)
Range: 3,000 nautical miles
Altitude: 80,000 to 95,000 feet
Weight: 11,000 pounds, gross
Dimensions: Length – 514.27 inches (42.85 feet)
Wing Span – 288.90 inches (24.075 feet)
Height – 85 inches (7.08 feet)
Payload: Hycon Frame camera (24" fl)
Coverage: 28nm x 3020nm
Resolution: 18 inches
Mission Code Names: TAGBOARD (D-21)
SENIOR BOWL (D-21B)

D-21 drone under B-52 wing during inflight refueling. (

MANNED ORBITING LABORATORY

The Manned Orbiting Laboratory (MOL) was which was consistent with MOL's unclassified misa project announced by the U.S. Air Force in Desion, while the NRO ran development of the covert cember 1963 that was designed to "...increase the reconnaissance mission of the program, including the camera system and other subsystems. Defense Department effort to determine military usefulness of men in space." In other words, use Secretary of Defense McNamara publicly anastronauts to conduct a military mission. To the nounced the start of the MOL program in Decempublic, this was a major move by the U.S. in an efber 1963. However, even though the program had fort to get ahead of the Soviet Union in the ongosupport from the military and the President, it was ing space race, and it called for placing military seldom fully funded due to competition from othpersonnel into orbit to conduct scientific experier DoD programs, NASA, and general governmenments to acquire new knowledge about the capatal budgetary pressure. By the time initial studies, bilities of man in space as related to the national planning, and organization were completed and defense, and to develop technology and equipthe program was ready to expand into full-scale ment to advance future manned and unmanned development and production in the late-60s, budspace flights. However, that was only one part of getary pressure had significantly increased due to the program – it was the unclassified cover story NASA's Apollo program and the Vietnam War. At told to the American public. The other part of the a time when the program required increased exmission, the real mission, was highly classified and penditures, its budget was being slashed, and as a managed by an obscure intelligence agency, the result, its timelines and costs were expanded and unacknowledged National Reconnaissance Office. increased. With growing pressure from the expan-The classified mission was known to those in the sion of the Vietnam War, the perceived duplica-NRO by the compartmented name of Dorian. tion of effort with NASA programs, and improved performance of operating unmanned surveillance Project Dorian, the true and classified objecsystems, in June 1969 the President cancelled the tive of the MOL, was to operate a manned recon-MOL program. The MOL program operated for five naissance station in space that would collect both and one-half years and spent \$1.56 billion, but imagery and signals intelligence. If the program never launched a manned vehicle into space. objectives were achieved, the MOL would enable

the U.S. to overcome the challenges and limita-

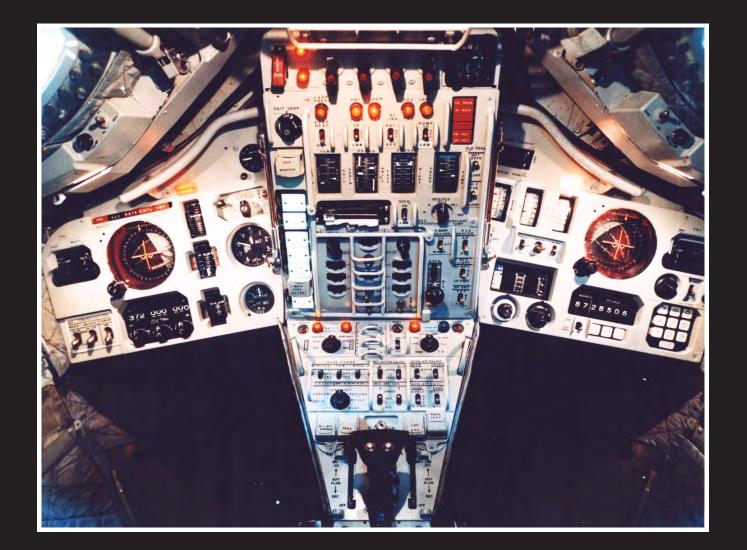
While MOL was not overly successful from a tions of the Corona and Gambit programs – mainly program perspective, it made important contributhe number of photo-reconnaissance images that tions to national reconnaissance and space explowere obscured by cloud cover, slow targeting reration programs. The camera systems were studied sponse time, and difficulty in addressing technical for future use on the Hexagon program, the mirissues with an orbiting satellite. ror technology was incorporated into a domestic At the time, several military and contractor space laboratory, and elements of the technology studies estimated that manned surveillance satelmade advancements that helped achieve longer lites could acquire photographic coverage of the human based space missions. In addition, many of Soviet Union with resolution better than the best the astronauts who trained for the MOL program system at the time (the first generation Gambit satwent on to NASA to pilot and fly on space shuttle ellite). Additionally, the Air force billed the MOL as missions and make important contributions to NAa reconnaissance system that could more efficient-SA's space flight programs. ly and quickly adjust coverage for crises and targets of opportunity than unmanned systems. The Air Force controlled development of the satellite,

Manned Orbiting Laboratory

Fourteen of the seventeen selected MOL astronauts. From left to right, top row: Herres, Hartsfield, Overmyer, Fullerton, Crippen, Peterson, Bobko, Abrahamson. From left to right, bottom row: Finley, Lawyer, Taylor, Crews, Neubeck, Truly.

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

Manned Orbiting Laboratory



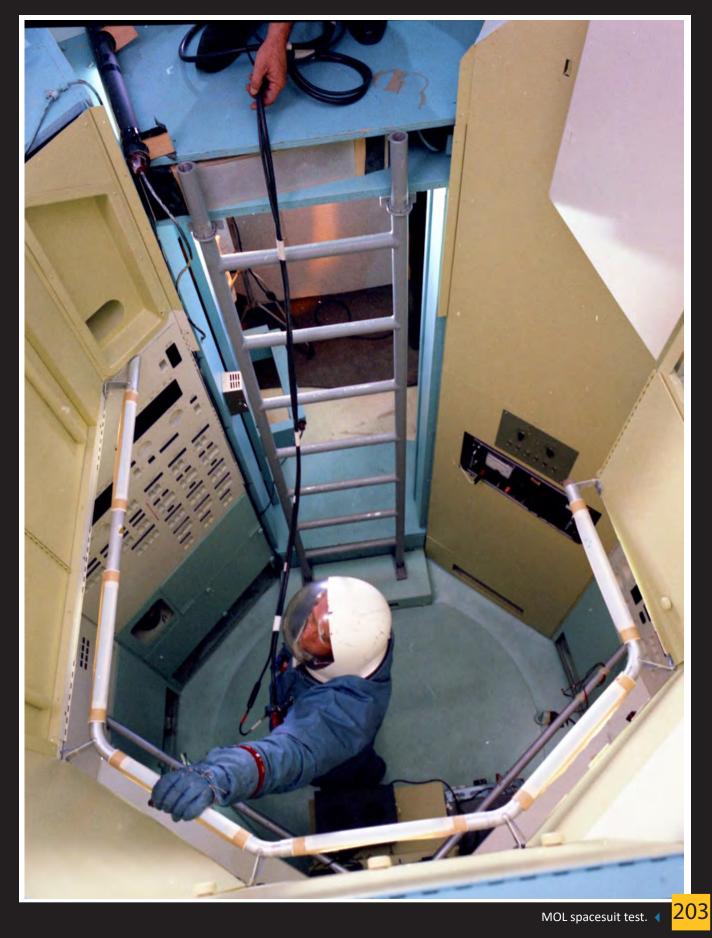
196

MOL interior.



198 MOL control panel.

MOL team taking some down time. ◀



Manned Orbiting Laboratory

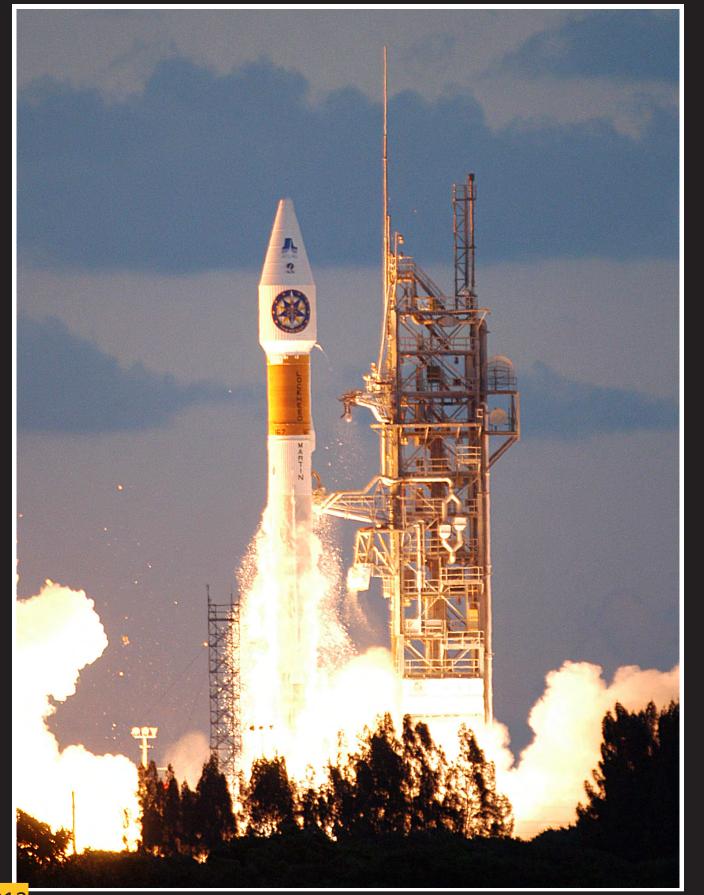
MOL team test spacesuits. 📢

Manned Orbiting Laboratory

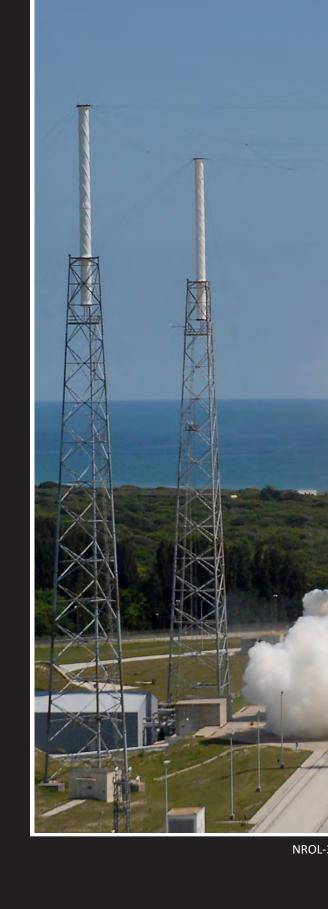
LAUNCH

The launch of rockets, particularly those large The existence of the NRO and very limited enough to carry satellites into space, cannot be details about it was declassified in September hidden from the public. They make a lot of noise, 1992; then on 18 December 1996, the NRO made can be seen for miles, and shake the ground in the the very first public announcement of a satellite vicinity of the launch site. Anyone within hundreds launch. However, information about launches prior of miles of the launch site is likely to see it and the to that first announcement remain classified if the media can be expected to report on it. However, program supported by the launch is still classified. Today, the NRO continues to publicly announce its the situation is made even more complicated when the satellite payloads carried into space are launches although information about the satellite for vital national security missions, and the very payload and the program it supports are classified existence of the organization carrying out the and likely will remain so for decades to come. launch is so highly classified that even saying the words "National Reconnaissance Office" or "NRO" outside of secure and approved facilities is illegal. Such was the case for the NRO satellite launches for more than the first 30 years of NRO's existence.

NROL-82 - Delta IV Heavy - launch from Vandenberg - 26 April 2021.


NROL-13 - Atlas IIA - launch from Vandenberg - 8 September 2001.

NROL-18 - Atlas IIAS - pre-launch at Vandenberg - 2 December 2003.


NROL-22 - Delta IV Medium - launch from Vandenberg - 27 June 2006.

Launch

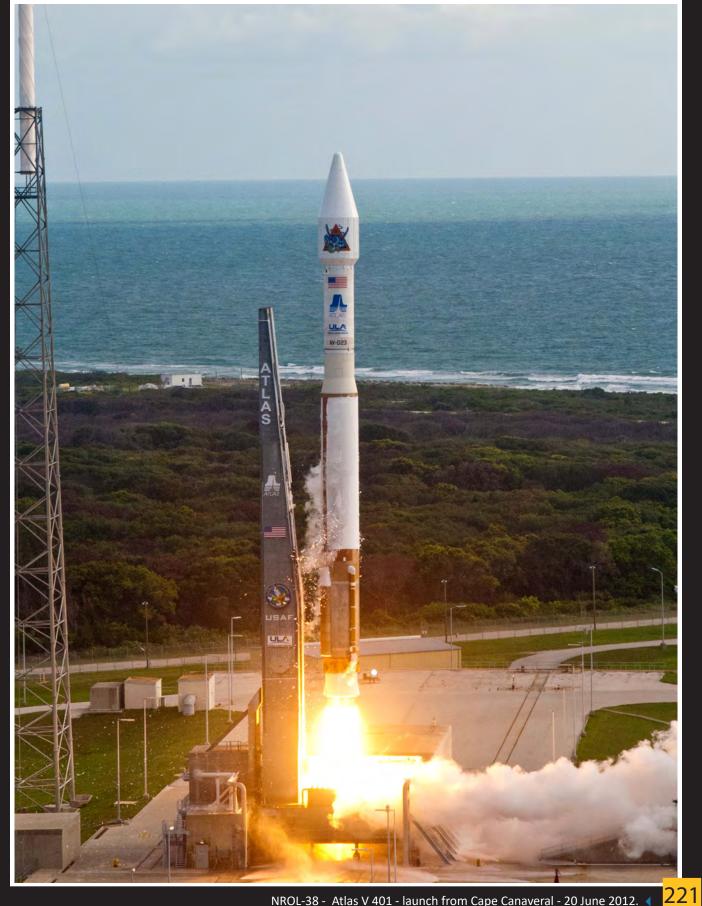
213



NROL-21 - Delta II - launch from Vandenberg - 14 December 2006.

NROL-30 - Atlas V 401 - launch from Cape Canaveral - 15 June 2007. \checkmark 215

216 NROL-24 - Atlas V 401 - launch from Cape Canaveral - 10 December 2007.



218 NROL-32 - Delta IV Heavy - pre-launch at Cape Canaveral - 21 November 2010.

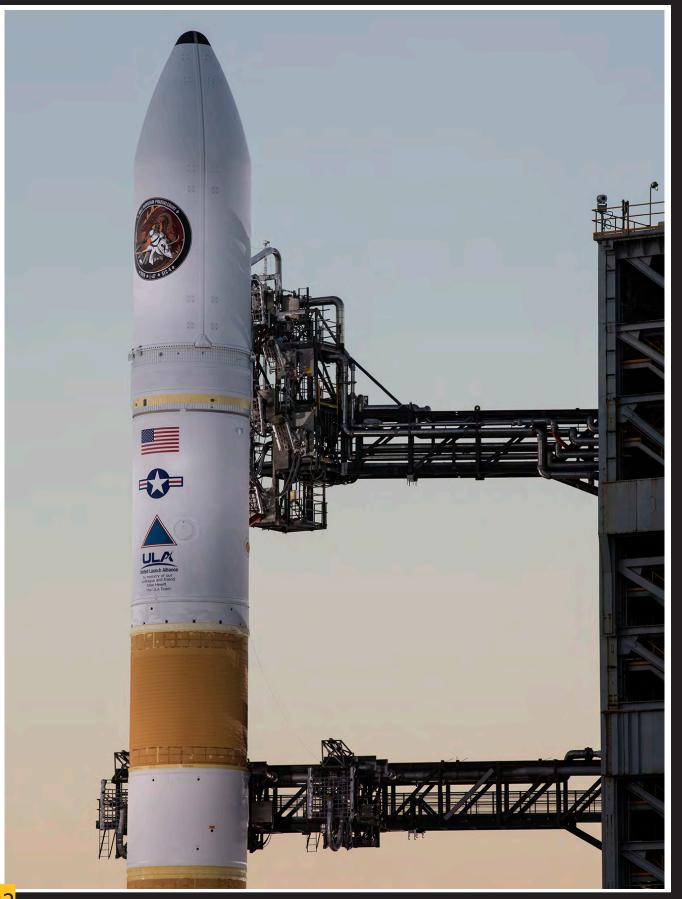
220 NROL-25 - Delta IV M+ - launch from Vandenberg - 3 April 2012.

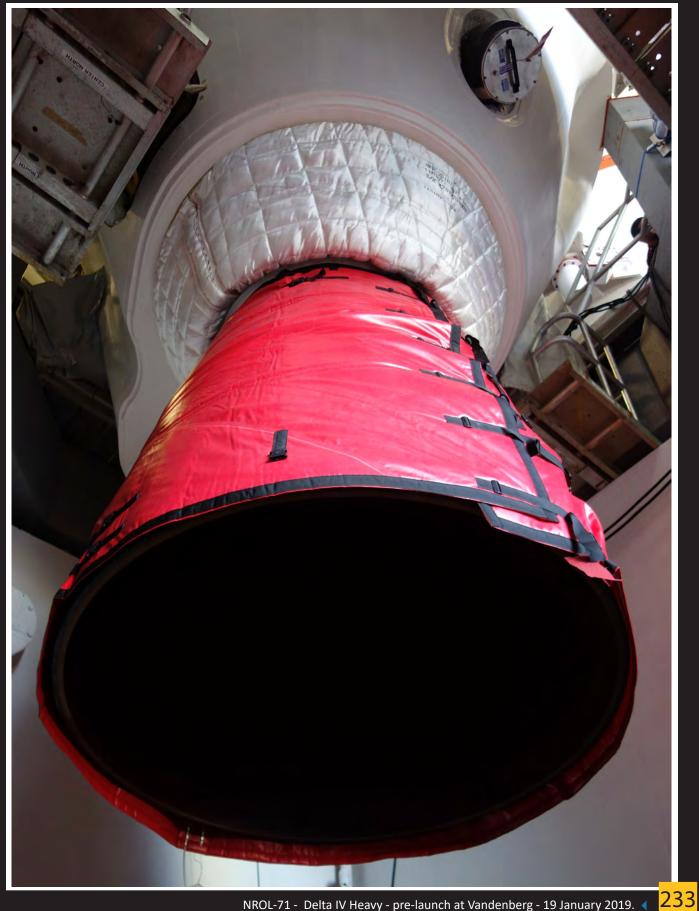
NROL-38 - Atlas V 401 - launch from Cape Canaveral - 20 June 2012.

NROL-15 - Delta IV Heavy - launch from Cape Canaveral - 29 June 2012.

NROL-65 - Delta IV Heavy - launch from Vandenberg - 28 August 2013.

Launch





NROL-76 - Falcon 9 - launch from Kennedy Space Center- 1 May 2017.

A COLLECTION OF PHOTOS FROM THE NATIONAL RECONNAISSANCE OFFICE

NROL-42 - Atlas V - pre-launch at Vandenberg - 24 September 2017. \checkmark 231

232 NROL-47 - Delta IV - pre-launch at Vandenberg - 12 January 2018. Launch

234 NROL-71 - Delta IV Heavy - launch from Vandenberg - 19 January 2019. NROL-151 - Electron - launch from Complex-1 New Zealand - 31 January 2020.

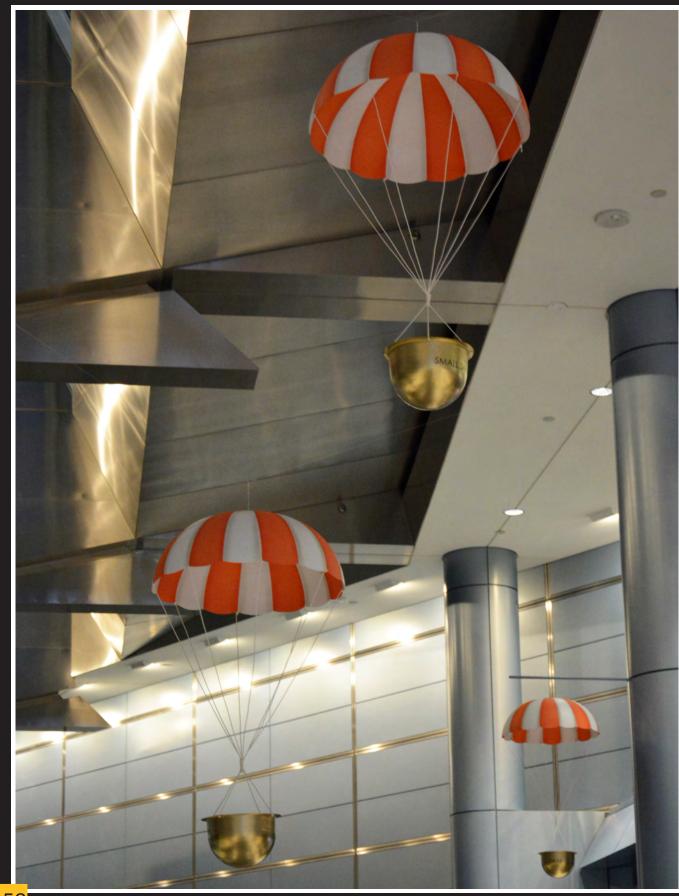
NROL-101 - Atlas V 531 - launch from Cape Canaveral - 13 November 2020.

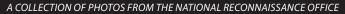
240 NROL-44 - Delta IV Heavy - pre-launch at Cape Canaveral - 10 December 2020. NROL-44 - Delta IV Heavy - pre-launch at Cape Canaveral - 10 December 2020. 📢 241

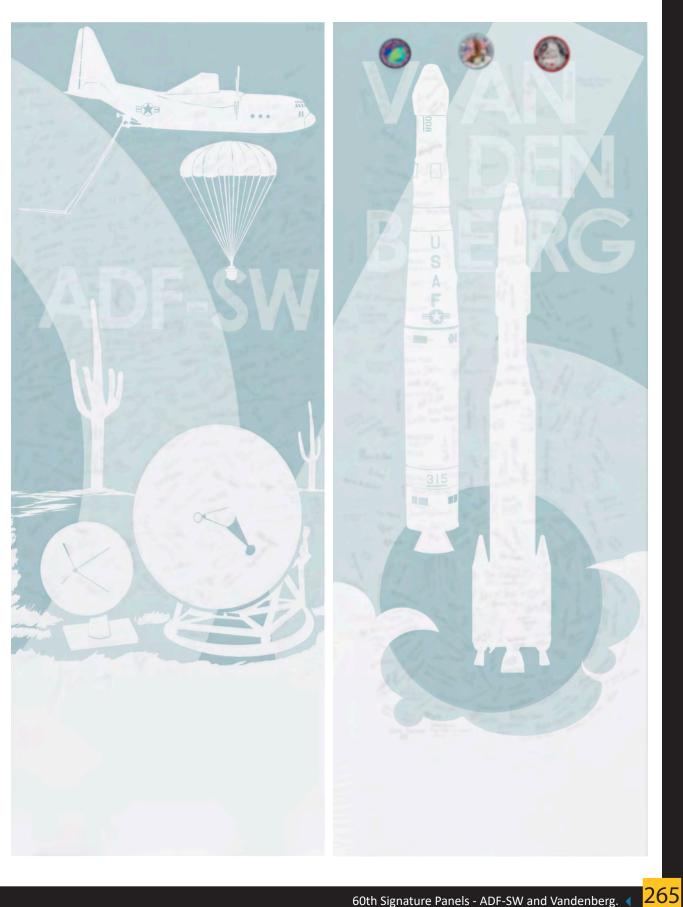
WESTFIIELDS -THE BUILDING OF NRO **HEADQUARTERS**

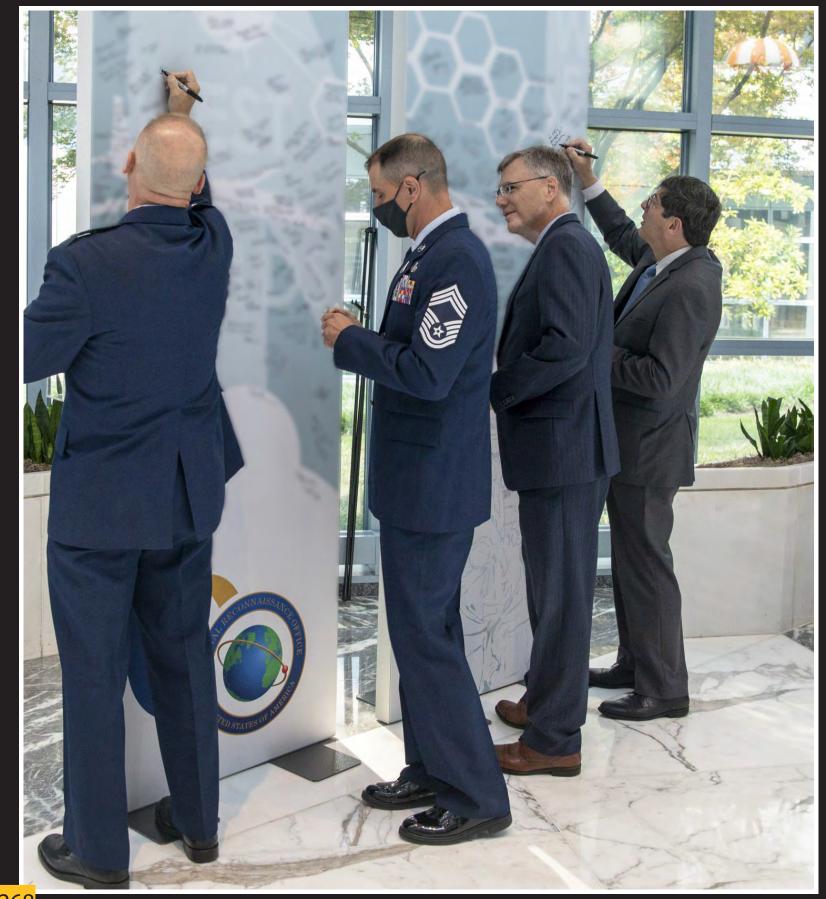

When the NRO was established in September task force to continue the review of a restructured 1961, it brought together under one organization NRO. Known as the Fuhrman Panel, the report all of the overhead reconnaissance efforts from confirmed the earlier Geiger-Kelly conclusions the Navy, Air Force, and Central Intelligence and recommended completing the collocation Agency. While the mission of the NRO was effort, which had already begun, by the end of consolidated under one organization with a small calendar year 1993. oversight staff office in the Pentagon, the work On 15 November 1990, Rockwell International and employees were geographically separated Corporation, acting on behalf of the still classified from one another across the country. In addition NRO, purchased the 68 acre tract of land in the to launch facilities at Cape Canaveral in Florida Westfields Development of Fairfax County, and Vandenberg Air Force Base in California, Virginia, where the current NRO Headquarters there were elements of the NRO at the Pentagon now stands. Rockwell was hired as the prime and Central Intelligence Agency in Virginia, the contractor for the project using a pass-through Naval Research Laboratory in Maryland, and contract. Through this mechanism, the NRO additional Air Force efforts in California. That protected its classified status by having Rockwell dispersed work force was in place for the first 30 (and later Boeing Corporation) serve as a cover years of NRO's existence, but it became clear that entity, but without paying fees to Rockwell for consolidation within one facility was the best hiding the NRO presence. Davis and Dewberry option for NRO's continued success as a unified were hired as the architects along with the satellite reconnaissance activity. contract giant Hazel. Later, Hyman was hired to The decision to collocate the NRO workforce build the first three towers of the complex, which was later expanded to four. Turner Construction was engaged to design the interior of the building. Initial site work and construction of Westfields began in early 1991.

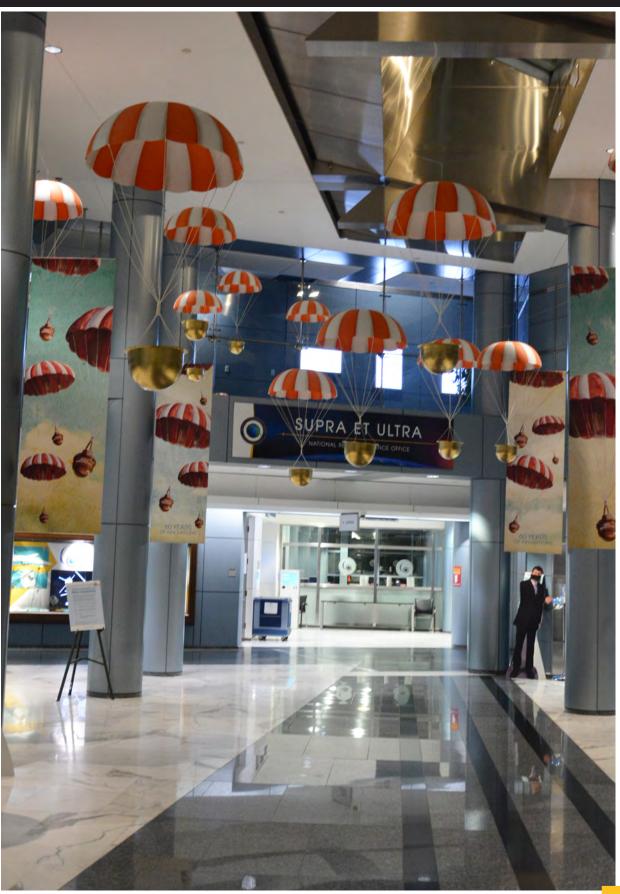
from multiple geographically separated sites began with a series of observations and studies in the mid to late 1980s. During his tenure as NRO Director, Pete Aldridge observed that competition between the NRO's alphabetic programs had Work proceeded on the NRO's new become largely counterproductive. In the spring headquarters compound and the initial of 1988, NRO's Deputy Director, Jimmie Hill, construction was proceeding smoothly, but requested the development of a preliminary controversy began to swirl due to increased plan to collocate all of the NRO into one facility. Congressional and public scrutiny over the \$350 In February 1989, a team began working on the million top secret project that various members NRO Restructure Study. Known as the Geigerof Congress claimed they were not aware of and Kelly study, the group issued a report in July 1989 had not been approved. After much drama in the that concluded, among other things, that there press and on Capitol Hill, everyone involved was was "substantial benefit to be gained by the NRO eventually cleared and vindicated of misleading and its users and customers from collocation of Congress. The first occupants of Westfields moved the NRO..." For the collocation, the Geiger-Kelly into their new office spaces on 11 January 1996. report recommended a three phase approach, with the final step being the purchase of a site for a permanent facility, into which the NRO workforce would relocate. Additionally, in 1992, the Director of Central Intelligence established a



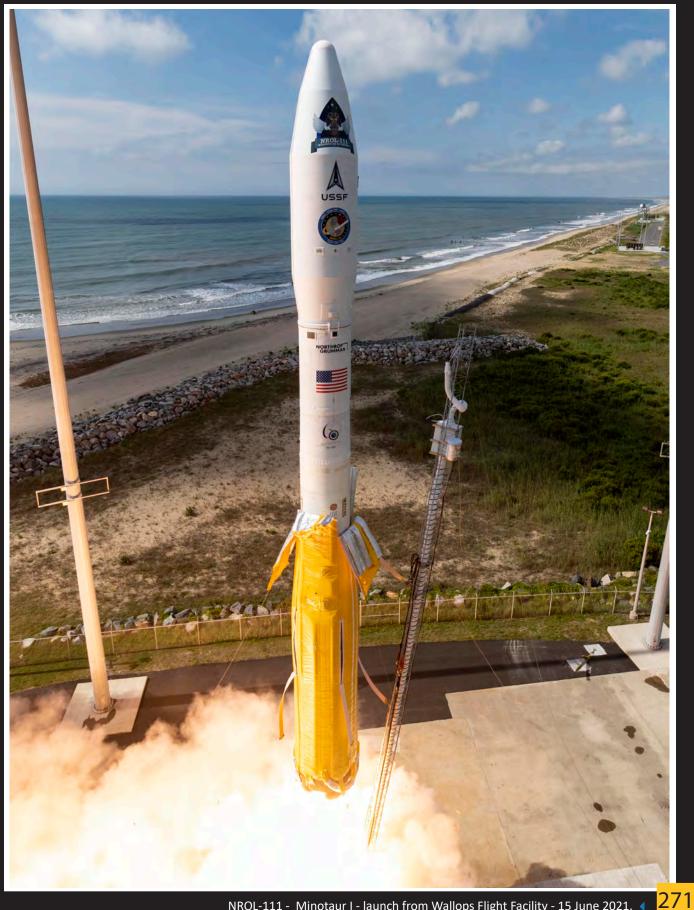

NRO'S 60TH ANNIVERSARY



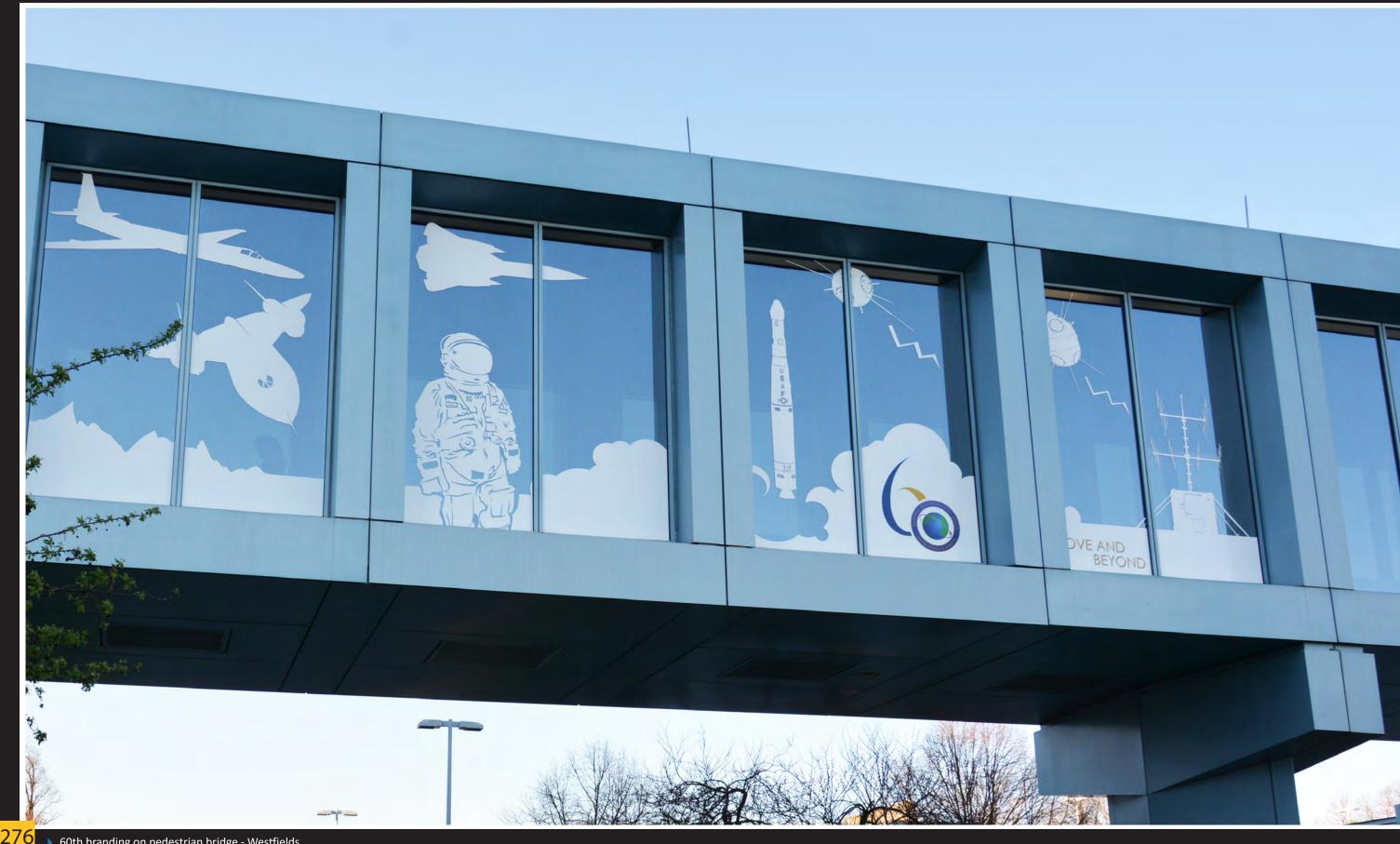


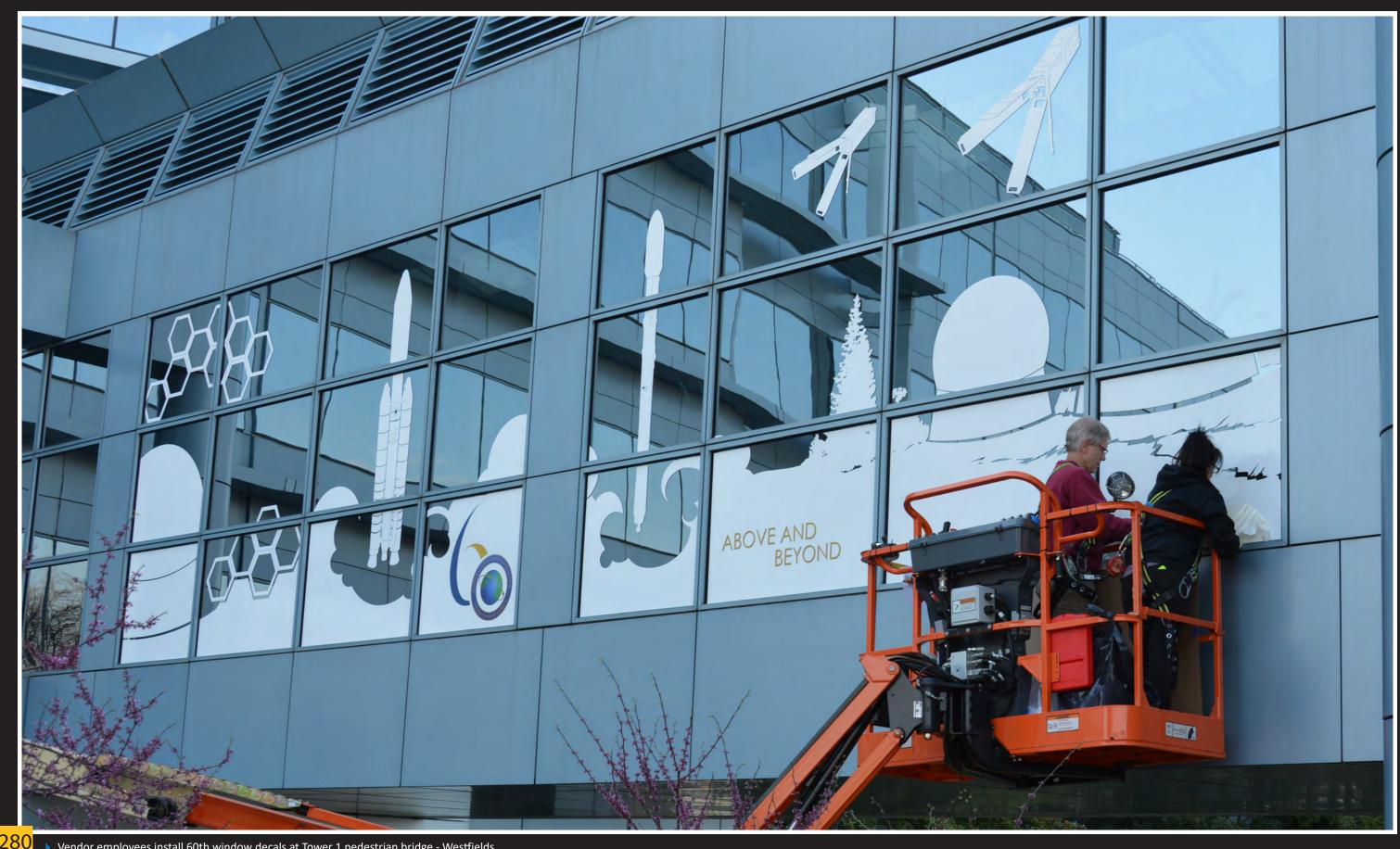


60th Signature Panels - ADF-SW and Vandenberg.



60th Parachutes hang in Westfield's Main Lobby. ∢ 269




NROL-111 - Minotaur I - launch from Wallops Flight Facility - 15 June 2021.

// We are bridging innovative legacies of our past with a cutting-edge vision for our future as we celebrate NRO's 60th anniversary. Since its inception in 1961, NRO has taken quantum leaps in the evolution of overhead reconnaissance space and ground systems.

Dr. Scolese, NRO Director

TIMELINE

1941

7 December

Hundreds of Japanese fighter planes attacked the American Naval Base at Pearl Harbor near Honolulu, Hawaii

1945

German engineer and rocket specialist Wernher Von Braun and 500 of his top rocket scientists surrendered to the Americans as World War II ended in Europe. Von Braun also turned over rocket plans and test vehicles.

1947

7 March

Small Steps Program: A group of scientists and soldiers in the New Mexico desert saw the first pictures taken of Earth from greater than 100 miles in space. A year earlier John T. Mengel (who later oversaw the NASA's Vanguard Program), experimenting with German V-2 rockets, designed and fabricated the first nose shell to replace the V-2 warhead and placed cameras in the nose shell.

26 July

President Truman signed the National Security Act, establishing the U.S. Air Force (USAF) as a separate service and forming the CIA, the National Security Council, and the DoD.

1949

29 August

Soviet Union tested its first atomic bomb.

1950

In 1950

President Truman selected the U.S. Air Force to conduct reconnaissance overflights of Soviet territory. Known as SENSINT, the USAF flew its new modified B-47 bombers for these missions.

Also in 1950

At a University of Illinois, Chicago Space Medicine In 1956 Symposium Wernher Von Braun presented a paper U-2 photos taken of Saratov-Engels airfield southeast about the construction and launching of multistage of Moscow showed only a few dozen new Soviet rockets and orbiting space stations. He proposed they Myasishchev-4 (Bison heavy bombers), dispelling the could be used as observation posts or as a bomb carrier. myth of the U.S. "bomber gap" with the Soviet Union.

1954 25 July

President Eisenhower appointed a "Technological Capabilities Panel (TCP) to study options for dealing with the threat posed by the lack of ability to gather intelligence on the Soviet Union. The TCP's Project Committee lead by Edwin "Din" Land recommended the government proceed with Lockheed Corporation's plan for a reconnaissance aircraft designed to fly above the Soviet air defenses.

24 November

President Eisenhower approved the U-2 concept and appointed the CIA to manage its development.

1955

Eisenhower selects Naval Research Lab (NRL) to lead the Vanguard research satellite program for the International Geophysical Year.

4 August

A U-2 prototype flew its first test flight, just eight months after Lockheed signed a contract to build the U-2.

1956

20 June

Carl Overstreet flew a U-2 over denied territory for the first time, photographing areas of East Germany and Poland.

4 July

Hervey Stockman piloted the first U-2 flight over Soviet airspace, flying over Leningrad, Soviet radar detected the flight.

29 October

The USAF awarded a contract to Lockheed for the WS-117L program, an outgrowth of the RAND studies and the only reconnaissance satellite effort at that time in the U.S. The WS-117L program planned for a family of satellites that collected photographic, electronic, and infrared intelligence.

1957

15 May

The U.S.S.R. launched R-7 Intercontinental Ballistic Missile (ICBM), giving Soviet Union the lead in space race.

3 August

Soviet Union tested the SS-6/R7, the first ICBM.

4 October

Soviet Union orbited Sputnik 1, the first artificial satellite.

17 December

The U.S. successfully launched the first Atlas ICBM, eventually leading to its use for payloads in space.

1958

24 January

The Air Force submitted proposals and recommendations for an expedited U.S. satellite and space program at the request of the Office of the Secretary of Defense. An Air Force Manned Strategic Station, assigned missions of weapons delivery and reconnaissance, was one of the programs proposed.

31 January

U.S. Army launched Explorer-1, the first successful U.S. satellite.

7 February

President Eisenhower approved the Corona satellite program. Corona, codenamed Discoverer, was split off from the USAF program WS-117L. Eisenhower appointed the CIA and the USAF to develop and manage the Corona program jointly.

March

The NRL's Reid D. Mayo proposed mounting on satellites technologies used on submarines to capture and analyze Soviet radar sites.

1 August

General Orders activated the 6593rd Test Squadron, U.S. Air Force personnel assigned to recover the Corona film capsules. The aircraft—C-119J and USAF personnel used in the Corona recovery operations had been a part of the earlier GENETRIX program, the reconnaissance balloon operation.

24 August

President Eisenhower approved NRL's proposal to develop the GRAB (Galactic Radiation and Background) satellite, under the codename "Tattletale".

September

Analysts at Aviation Week and Space Technology included radar imagery systems in their predictions for emerging satellite capabilities.

1959

21 January

The attempt to launch the first Corona satellite was aborted.

28 February

Discoverer I launched and established orbit, it constituted a success; however, it did not carry a capsule.

March

USAF Chief of Staff, General Thomas White, instructed his Director of Development Planning to create a longrange plan for an Air Force space program. One project in this plan included a "manned orbital laboratory."

24 August

President Eisenhower approved the GRAB Elint satellite reconnaissance program.

1 September

The Air Force Research and Development Command (ARDC) issued a system directive to the Aeronautical System Division at Wright-Patterson AFB, requesting an investigation of a military test space station (MTSS). The directive's goal was to obtain initial design plans for an orbiting station to conduct tests in an actual space environment. ARDC elements were tasked with finding tests that could be conducted in the space station. ARDC elements contributed more than 125 ideas.

1960

24 March

Eastman Kodak proposed to the U.S. Air Force and the CIA a 77-inch focal length lens camera for satellite reconnaissance. This became the KH-7 camera for the first high resolution imagery satellite, Gambit-1.

20 April

The U.S. Army released images of American cities taken from an AN/UPD-1, side-looking airborne radar (SLAR) system. The technology proved capable of producing images at night and through cloud cover.

1 May

The Soviets used an SA-2 surface-to-air missile (SAM) to shoot down Francis Gary Powers' U-2 reconnaissance plane near Sverdlovsk, U.S.S.R.

22 June

GRAB 1, the world's first reconnaissance satellite launched from Cape Canaveral, Florida.

10 August

The U.S. launched Discoverer XIII, the first successful diagnostic flight in the Corona series.

11 August

A U.S. Navy team retrieved Discoverer XIII's recovery capsule containing an American flag, the first recovery of a man-made object from orbit.

19 August

A U.S. Air Force crew, flying a C-119J aircraft, caught Discoverer XIV's recovery capsule in mid-air; it contained the first reconnaissance photographs from space. The DoD and CIA established the National Reconnaissance Office (NRO) to oversee the National Reconnaissance Program.

Fall

Senator John F. Kennedy made the "missile gap" an issue of his presidential campaign. As Vice President, Nixon received the intelligence imagery gathered from the first Corona mission. This imagery revealed that the "missile gap" was a myth; however, Nixon could not publicly acknowledge this highly classified information. When president-elect Kennedy received a briefing about intelligence collected by Corona, demonstrating that the Soviets had fewer missiles, he no longer spoke publicly about the "missile gap."

1 December

The first successful mission carrying the new KH-2 camera system, Discoverer XVIII, launched. The KH-2 featured a simplified camera system and had improved ground resolution of 35 feet compared to the 40 feet of the KH-1.

4	1	
	\sim	-

Fall

Colonel William King, deputy director of the U.S. Air Force's Special Projects Staff in Los Angeles, headed a study group looking at the feasibility of launching a proof-of-concept synthetic aperture radar (SAR) satellite. The group believed an SAR satellite would improve the U.S. Air Force's ability to assess post-nuclear bomb damage. King selected Major David Bradburn to lead the project.

16 August

The Air Force submitted a Program Package to the Office of the Secretary of Defense requesting a \$5 million allocation in FY 1963 for space station exploration.

30 August

The first flight with the KH-3 camera system. The improvements implemented resulted in improved ground resolution of 20 to 25 feet. In just one year Corona camera systems improved ground resolution by 20 feet.

6 September

1962

January

Goodyear, under contract to Program A, began preliminary SAR design work.

12 February

USAF Deputy Chief of Staff Research and Development (DDR&E) Gen. James Ferguson discussed before a congressional committee the Air Force space station proposal. Ferguson discussed a collaboration with NASA, possibly using the Gemini vehicle, NASA's man in space program, as the initial transport for the orbiting station.

27 February

The first Corona KH-4 mission to fly dual KH-3 cameras. The cameras, mounted back-to-back, increased the information gathered using this configuration by a factor of 2.5 times. The KH-4 flew until 1963, completing 21 successful missions and returning 270,000 feet of film. Each mission carried 80 pounds of film and achieved a ground resolution of 10 to 25 feet.

30 April

The CIA's A-12, a high-altitude, supersonic "Oxcart" aircraft intended as a follow-on to the U-2, made its first official test flight.

27 July

Secretary of Defense McNamara signed an agreement with NASA allowing the Air Force to participate in the Gemini Program.

29 August

The U-2 imagery revealed SA-2 surface-to-air missile (SAM) sites under construction in Cuba.

October

CIA authorizes Skunkworks to explore the feasibility of outfitting the A-12 with an unmanned reconnaissance drone for use over denied territory.

22 October

After disclosing to leaders of Britain, France, Germany, and Canada reconnaissance photos of Soviet nuclearcapable missiles in Cuba, President Kennedy televised to the American people that "closest surveillance" of the island yielded "unmistakable evidence of offensive missile sites."

28 October

Soviet officials ordered removal of nuclear-capable missiles from Cuba.

7 November

Bradburn officially proposed to NRO Director Charyk the SAR satellite concept. DNRO approved the proposal three days later. The project was known by the classified name "P-40." The satellite received the code name "Quill."

November

NRO awarded contracts to Goodyear and Lockheed. Goodyear manufactured the radar payload and designed, tested, and operated the experimental radar. Lockheed assumed responsibility for overall systems engineering, technical direction, and provided the upper stage/satellite body and associated subsystems.

December

The USAF orders six reconnaissance/strike – RS (aircraft designator letters) high-speed, high-altitude aircraft for flights over hostile territory after a nuclear attack.

13 December

Program C, NRO's Navy program launched GRAB's successor Poppy 1 from Vandenberg Air Force Base.

1963

21 January

Secretary of Defense McNamara and NASA Administrator James Webb signed a second agreement with NASA's Gemini program, which created the Gemini Program Planning Board (GPPB). This panel formed to ensure maximum attainment of objectives of value to both NASA and DoD. The panel also looked for military experiments that could be flown on NASA vehicles.

18 April

The USAF proposed to McNamara the idea of establishing a national space station.

12 July

The NRO launched the first Gambit-1 equipped with the first stereo pointing, high resolution KH-7 camera. The payload was carried in an orbital control vehicle atop an Atlas-Agena D booster combination. The mission returned 198 feet of exposed film with a resolution of 3.5 to 10 feet, the best images obtained from any reconnaissance satellite to date.

5 August

Albert "Bud" Wheelon, appointed as the CIA's 1st Deputy Director of Science and Technology (DDS&T), began to focus on a new search and surveillance reconnaissance system.

24 August

The first KH-4A imagery satellite launched. The improvement to the KH-4A satellites included two film buckets, and auxiliary rockets to control orbit decay allowing the system to fly at lower altitudes to image select targets. KH-4A achieved imagery resolution of nine feet during its mission life.

10 December

McNamara announced at a press conference the cancellation of DynaSoar, a vehicle designed to fly from earth to space and return. McNamara also announced the DoD would build and launch a two-manned orbital laboratory in 1967 or 1968. A replacement for DynaSoar, known as the Manned Orbiting Laboratory would save \$100 million in the budget to be sent to Congress.

1964

January

DDS&T Wheelon convened a study with 25 National Photographic Interpretation Center photointerpreters to determine what resolution was needed to identify a variety of Soviet targets. The findings concluded ground resolution of 2-4 feet was needed. The Corona system at the time returned a resolution of 7-10 feet. The panel findings underlined the basis for convening the study—the need for a system with Gambit resolution and Corona wide area coverage.

3 January

SAFSP received formal approval to begin development of Gambit 3. Gambit 3 had a 160 focal length lens, Due to the OCV issues with Gambit I, Gambit 3 would use the Agena for orbital control.

April

The NRO established Project Dorian to assess its reconnaissance camera's feasibility for use and flight aboard the USAF's anticipated Manned Orbiting Laboratory with astronauts controlling the camera.

April

McNamara approved the MOL pre-Phase I technical development studies. The studies included reconnaissance studies, which would be handled under BYEMAN control and carried out exclusively by the NRO as Project Dorian.

8 April

NASA Gemini I (GT-I), an unmanned orbital test of the Titian II launch vehicle, launched. This was the first of 12 Gemini Program launches. Military experiments were performed during the Gemini flights; a number of which proved the feasibility of man to track, acquire, and photograph objects in space and on the ground.

June

When President Johnson announced the existence of the RS aircraft he inadvertently switched the designator letters to SR. The USAF kept the SR designator and changed the category to Strategic Reconnaissance.

October

DNRO McMillan approved the switch to the Titan III as a rocket booster for the new Gambit 3 satellite. This new booster allowed for excess lift capability, this proved to be useful on later Gambit 3 Block II system which, carried two film buckets.

9 December

Eastman Kodak advised it could not deliver the Dorian optical sensor by the original projected delivery date of January 1969.

21 December

Quill launched at 11:08 am Pacific Standard Time from Vandenberg Air Force Base. Vandenberg tracking station personnel declared operational the data-link equipment during its seventh orbit. On the next pass over New Hampshire and Vandenberg radar mapping was attempted. The world's first satelliteborne radar imager, Quill, made orbit and returned the first images as part of an NRO demonstration mission.

22 December

The SR-71, the USAF's "Blackbird," a slightly larger and heavier version of the CIA's A-12, made its first official test flight.

23 December

After a series of studies the MOL Systems Office revised the general performance and design requirement specifications to include a dual approach of a manned and unmanned MOL. The idea of an unmanned system was raised in August 1965.

1965

5 January

Bradburn briefed DNRO Brockway McMillan on preliminary results of the Quill mission. Based on the early analysis the second Quill vehicle would not be launched.

11 January

Quill reentered after its 333rd orbit.

June

In the Program A Quarterly Report, Maj Gen Robert Greer stated that further funding was provided for the associate contractor to complete its studies, but Special Projects considered the Quill program complete.

24 August

McNamara submitted to President Johnson a memo recommending that they proceed with the MOL Project definition beginning in fiscal year 1966. McNamara made his recommendation based on a review of the MOL studies, which he concluded were satisfactorily completed. McNamara recommended that MOL be operated under the NRO security guidelines.

287

25 August

President Lyndon B. Johnson approved Manned Orbiting Laboratory for USAF development. President Nixon eventually canceled the MOL project in 1969.

1966

President Johnson terminated the A-12 program seeing little value in maintaining two planes with similar capabilities-the overt SR-71 and covert A-12.

January

DoD and NASA established the Manned Space Flight Policy Committee to oversee manned programs and coordinate NRO-NASA activities.

21 March

Charles Schultze, Director of the Budget Bureau, expressed in a memo to McNamara reservations about the cost of MOL. Schultze first raised these concerns in July 1965.

25 May

A study group from the MOL Program Office's Mission Planning Division reaffirmed the need to keep the manned approach to MOL. General Schriever expressed concern in December 1965 that the unmanned approach was favored and the manned version could be eliminated.

26 April

The ExComm approved the development of Fulcrum, now called Helix/Hexagon.

29 July

The NRO launched the first Gambit-3 with an improved KH-8 camera and film resolution.

July 1966 – June 1967

Three active photoreconnaissance satellites - Corona, Gambit-1 and Gambit-3 returned so much imagery the photointerpreters were barely able to keep up with the volume of intelligence photography. This lead to lowering the number of future Gambit-3 launches.

23 August

NASA's Lunar Orbiter 1 satellite took first pictures of Earth from the moon using a Samos camera.

August

General Schriever retired from active duty as head of Air Force Systems Command and MOL Program Director.

Fall

McNamara decided to proceed with MOL as a manned system; as he was more confident the manned system could achieve better resolution than the unmanned svstem.

October

CIA awarded Perkin-Elmer the contract for development of the Hexagon camera system.

1967

The A-12 began to fly its only operational mission, under the codename BLACK SHIELD. From May 1967 - May 1968 the A-12 flew 29 missions over East Asia, supporting the U.S. military during the Vietnam War.

7 January

Due to budget needs in Southeast Asia the Air Force budget request was \$157 million less than the minimum requirement for MOL and \$381 million less than contractors' estimates.

4 June

The last Gambit-1 launched from Vandenberg AFB. Its mission life was 8.1 days and the image resolution was better than 2 feet.

20 July

NRO awarded the contract for the Hexagon spacecraft development to Lockheed.

15 September

The first KH-4B imagery satellite launched. The improvements to this final Corona system included better exposure control which allowed the satellite to fly as low as 80 nautical miles (nm). KH-4B achieved a ground resolution of six feet. The KH-4A and KH-4B systems flew 65 successful missions, returned 32,000 feet of film per mission, covering 400,000 nm of cloudfree ground coverage.

20 October and 3 November

A-12s and SR-71s compete in a fly-off, codenamed NICE GIRL to determine which aircraft performed better. The A-12's camera worked better—it had a wider swath and higher resolution-but the SR-71 collected types of intelligence the CIA aircraft could not, although not of very good quality.

1968

January

Itek Corporation became the contractor for the Hexagon Mapping Camera.

In 1968

The MOL project faced opposition from the State Department, CIA, and Congress. Congress agreed to provide \$550 million.

23 January

North Korea seized the U.S. Navy ship Pueblo, while it was on a SIGINT mission in international waters. On 26 January an A-12, piloted by Jack Weeks, flew three passes over southern North Korea. The mission gathered intelligence on North Korean armed forces and discovered the location of the Pueblo. Two subsequent missions determined war with North Vietnam was not in immediate danger of escalation and North Korea was not preparing military action due to the Pueblo incident. The Pueblo crew was released 11 months after the seizure of the ship.

March

SR-71 began to replace A-12 aircraft in the BLACK SHIELD operation.

21 June

The A-12 made its final flight.

1969

National Photographic Interpretation Center (NPIC) evaluated Quill imagery and stated that SAR was "capable of providing useful intelligence."

In 1969

President Nixon canceled the MOL Program due to cost overruns and lack of utility.

23 January

The Soviet satellite Cosmos 264 made orbital adjustments which brought it close to Gambit-3. U.S. engineers were concerned that Cosmos was a killer satellite. The satellite passed within 15 miles of Gambit-3 without incident.

23 August

The first successful Block II series of Gambit-3 launched. The Gambit Block II satellites carried two film buckets. Block II vehicles flew until 1972.

1970

18 August

The 18 day Gambit-3 mission 28 was given special orbital adjustment to image the Middle East. The mission returned imagery of the Suez cease fire (War of Attrition) zone. The War of Attrition occurred between Israel and Egypt, Jordan, the Palestinian Liberation Organization and its allies.

1971

15 June

The first Hexagon satellite, carrying four film recovery buckets, launched on a Titan III. This first mission (#1201) revealed problems with the parachutes. The U.S. Navy and U.S. Air Force recovered three of the four film buckets. During its 52-day mission, Hexagon conducted 430 photo operations and produced an average ground resolution of 3.5 ft. and a best resolution of 2.3 ft. A total of 123, 601 ft. of film was recovered.

10 July

The third bucket from the first Hexagon mission returned to Earth with a damaged parachute. The bucket, traveling between 400 and 500 feet per second, hit the water with a force of 2600Gs and immediately sank to the bottom of Pacific Ocean.

Representatives from the U.S. Navy, CIA, NRO, U.S.

Air Force and industry representatives met at CIA

headquarters to finalize the details to retrieve the

lost bucket from Hexagon Mission #1201. The U.S.

Navy proposed using its most advanced deep sea

submersible Trieste II Deep Sea Vehicle 1 (DSV-1).

27 July

1972

26 April

The U.S. Navy's DSV-1 recovered the third bucket from a depth of 16,400 feet.

25 May

The last Corona mission (#1117) launched from Vandenberg, AFB. The Thor/Agena D vehicle carried the KH-4B camera system with dual film recovery capsules. The U.S. Air Force crews from the 6593d Test Squadron (Special) recovered the first capsule (#1117-1) on 27 May. The air crews recovered the very last Corona capsule (#1117-2) on 31 May.

26 May

President Nixon and Soviet General Secretary Brezhnev signed the Strategic Arms Limitation Talks Treaty (SALT 1). Hexagon missions began to play a significant role in monitoring the Soviet Union's development and projection of strategic offensive and defensive weapons.

21 December

First Block III Series Gambit launched. The Block III's most significant change was the new roll joint, which could handle 18,000 maneuvers per mission.

1973

1 July

DNRO McLucas transferred responsibilities for Hexagon from Program B (CIA) to Program A (Air Force).

1974

1 October

The NRO and the CIA abolished Program D, transferring responsibilities for the U-2, A-12, and SR-71 to the USAF.

18 February

President Ford designated the NRO as part of the Intelligence Community.

13 March

The last Gambit Block IV version launched. The Block IV vehicle flew until 1984, when the Gambit program ended.

12 April

Columbia, the first Space Shuttle launched from Cape Canaveral. The flight returned on 14 April.

13 November

President Reagan signed National Security Decision Directive Number 8 designating the Space Shuttle as the primary launch system for U.S. government payloads. DoD payloads must be compatible with the shuttle.

1983

15 April

The longest duration flight of Gambit 3 – 129 days.

1984

17 April

The last Gambit-3 Mission #54 launched and flew for over 116 days.

25 June

The last successful Hexagon mission #1219 launched.

1986

18 April

The Titian booster launched from Vandenberg AFB exploded shortly after liftoff and destroyed the last Hexagon satellite. After nearly 13 years in service this explosion ended the era of film return satellites.

October

Shuttle launch facilities at Vandenberg suspended.

December

President Reagan cancelled the shuttle's status as a national orbiter.

1987

DoD cancelled the Vandenberg shuttle facility.

1992

30 March

President George H. W. Bush signed National Security Directive 67, which approved the Director of Central Intelligence's recommendation to realign the NRO by disbanding Programs A, B, and C.

18 September

The DoD officially acknowledged existence of the NRO.

31 December

NRO is officially restructured along the functional directorate lines of SIGINT, IMINT and COMM.

1995

In 1995

A joint NRO-NASA statement declassified the "fact of" their relationship.

22 February

President Clinton signed Executive Order (E.O.) 12951, declassifying imagery collected by Corona. The NRO announced the declassification of the U.S. Vice President Al Gore announces the E.O. at CIA Air Force Manned Orbiting Laboratory Program, code Headquarters on 24 February. named Dorian. The Dorian Program proposed the use of astronauts to perform space satellite reconnaissance.

2004

17 December

President George W. Bush signed the Intelligence Reform and Terrorist Prevention Act creating the position of Director of National Intelligence.

2008

9 June

NRO declassified the "fact of" radar satellite reconnaissance.

2009

27 November

DNI's Principal Deputy Director David C. Gompert approved the declassification of the "fact of" Quill as a radar imager, effective 25 November.

2011

8 – 20 July

The last space shuttle mission—Atlantis (STS-135), launched on 8 July. The mission included a supply delivery to the International Space Station.

17 September

DNRO Carlson announced declassification of Gambit and Hexagon IMINT systems.

2012

19 April

Thousands gathered around the Nation's Capital to welcome the Space Shuttle Discovery to its new home-The Smithsonian Air and Space Museum's Udvar Hazy facility in Chantilly, VA. The Space Shuttle Discovery, piggybacking on a modified 747, flew from Florida on its final journey, flying over many Washington area landmarks.

6 March

The Secretary of Defense, Ashton Carter's memorandum granted NRO the authority to establish a permanent cadre of DoD civilians to staff the NRO.

10 July

2017

1 May

The first NRO payload (NROL-76) carried into orbit on a Space X Falcon 9 rocket successfully launched from Launch Complex 39A, Kennedy Space Center, Florida, at 0715 EDT.

NRO's most important asset is people....they make all the difference and will lead us to a future where we can — as I like to say with a nod to one of our founders, Edwin Land — see it all, see it well, see it now, and innovate faster.

— Dr. Scolese, NRO Director

MAY 2024